1)Crone NE, Boatman D, Gordon B, et al. Induced electrocorticographic gamma activity during auditory perception. Brazier Award-winning article, 2001. Clin Neurophysiol. 2001; 112: 565-82
|
|
|
2)Miller KJ, Shenoy P, den Nijs M, et al. Beyond the gamma band: the role of high-frequency features in movement classification. IEEE Trans Biomed Eng. 2008; 55: 1634-7
|
|
|
3)Bizzi A, Blasi V, Falini A, et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology. 2008; 248: 579-89
|
|
|
4)Fernandez G, Specht K, Weis S, et al. Intra-subject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology. 2003; 60: 969-75
|
|
|
5)FitzGerald DB, Cosgrove GR, Ronner S, et al. Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol. 1997; 18: 1529-39
|
|
|
6)Pouratian N, Bookheimer SY, Rex DE, et al. Utility of preoperative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. J Neurosurg. 2002; 97: 21-32
|
|
|
7)Kunii N, Kamada K, Ota T, et al. A detailed analysis of functional magnetic resonance imaging in the frontal language area: a comparative study with extraoperative electrocortical stimulation. Neurosurgery. 2011; 69: 590-6; discussion 6-7
|
|
|
8)Rutten GJ, Ramsey NF, van Rijen PC, et al. Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol. 2002; 51: 350-60
|
|
|
9)Scarabino T, Giannatempo GM, Popolizio T, et al. 3.0-T functional brain imaging: a 5-year experience. La Radiologia Medica. 2007; 112: 97-112
|
|
|
10)Basser PJ, Pajevic S. A normal distribution for tensor-valued random variables: applications to diffusion tensor MRI. IEEE Trans Med Imaging. 2003; 22: 785-94
|
|
|
11)Kamada K, Todo T, Masutani Y, et al. Visualization of the frontotemporal language fibers by tractography combined with functional magnetic resonance imaging and magnetoencephalography. J Neurosurg. 2007; 106: 90-8
|
|
|
12)Kamada K, Todo T, Masutani Y, et al. Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. J Neurosurg. 2005; 102: 664-72
|
|
|
13)Kamada K, Todo T, Ota T, et al. The motor-evoked potential threshold evaluated by tracto-graphy and electrical stimulation. J Neurosurg. 2009; 111: 785-95
|
|
|
14)Duffau H, Moritz-Gasser S, Gatignol P. Functional outcome after language mapping for insular World Health Organization Grade II gliomas in the dominant hemisphere: experience with 24 patients. Neurosurg Focus. 2009; 27: E7
|
|
|
15)Sanai N, Berger MS. Intraoperative stimulation techniques for functional pathway preservation and glioma resection. Neurosurg Focus. 2010; 28: E1
|
|
|
16)Sanai N, Berger MS. Operative techniques for gliomas and the value of extent of resection. Neuro-therapeutics. 2009; 6: 478-86
|
|
|
17)Sanai N, Berger MS. Recent surgical management of gliomas. Adv Exp Med Biol. 2012; 746: 12-25
|
|
|
18)Crone NE, Hao L, Hart J, Jr., et al. Electrocorticographic gamma activity during word production in spoken and sign language. Neurology. 2001; 57: 2045-53
|
|
|
19)Ogawa H, Kamada K, Kapeller C, et al. Rapid and minimum invasive functional brain mapping by real-time visualization of high gamma activity during awake craniotomy. World Neurosurg. 2014; 82: 912. e1- e10
|
|
|
20)Yamao Y, Matsumoto R, Kunieda T, et al. Intraoperative dorsal language network mapping by using single-pulse electrical stimulation. Human Brain Mapp. 2014; 35: 4345-61
|
|
|
21)Tamura Y, Ogawa H, Kapeller C, et al. Passive language mapping combining real-time oscillation analysis with cortico-cortical evoked potentials for awake craniotomy. Neurosurgery. In press
|
|
|
22)Edwards E, Soltani M, Deouell LY, et al. High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol. 2005; 94: 4269-80
|
|
|
23)Trautner P, Rosburg T, Dietl T, et al. Sensory gating of auditory evoked and induced gamma band activity in intracranial recordings. NeuroImage. 2006; 32: 790-8
|
|
|
24)Mainy N, Kahane P, Minotti L, et al. Neural correlates of consolidation in working memory. Human Brain Mapp. 2007; 28: 183-93
|
|
|
25)Wu HC, Nagasawa T, Brown EC, et al. gamma-oscillations modulated by picture naming and word reading: intracranial recording in epileptic patients. Clin Neurophysiol. 2011; 122: 1929-42
|
|
|
26)Cardin JA, Carlen M, Meletis K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009; 459: 663-7
|
|
|
27)Cobb SR, Buhl EH, Halasy K, et al. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 1995; 378: 75-8
|
|
|
28)Fries P, Nikolic D, Singer W. The gamma cycle. Trends Neurosci. 2007; 30: 309-16
|
|
|
29)Hasenstaub A, Shu Y, Haider B, et al. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron. 2005; 47: 423-35
|
|
|
30)Traub RD, Cunningham MO, Gloveli T, et al. GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc Natl Acad Sci U S A. 2003; 100: 11047-52
|
|
|
31)Manning JR, Jacobs J, Fried I, et al. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci. 2009; 29: 13613-20
|
|
|
32)Nir Y, Fisch L, Mukamel R, et al. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol. 2007; 17: 1275-85
|
|
|
33)Ray S, Crone NE, Niebur E, et al. Neural correlates of high-gamma oscillations (60-200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J Neurosci. 2008; 28: 11526-36
|
|
|
34)Kunii N, Kamada K, Ota T, et al. The dynamics of language-related high-gamma activity assessed on a spatially-normalized brain. Clin Neurophysiol. 2013; 124: 91-100
|
|
|
35)Lacruz ME, Garcia Seoane JJ, Valentin A, et al. Frontal and temporal functional connections of the living human brain. Eur J Neurosci. 2007; 26: 1357-70
|
|
|
36)Matsumoto R, Nair DR, LaPresto E, et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain. 2004; 127: 2316-30
|
|
|
37)Rosenberg DS, Mauguiere F, Catenoix H, et al. Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain. Cerebral Cortex. 2009; 19: 1462-73
|
|
|
38)Saito T, Tamura M, Muragaki Y, et al. Intraoperative cortico-cortical evoked potentials for the evaluation of language function during brain tumor resection: initial experience with 13 cases. J Neurosurg. 2014; 121: 827-38
|
|
|
39)Entz L, Toth E, Keller CJ, et al. Evoked effective connectivity of the human neocortex. Human Brain Mapp. 2014; 35: 5736-53
|
|
|