1)Trattnig S, Bogner W, Gruber S, et al. Clinical applications at ultrahigh field (7 T). Where does it make the difference? NMR Biomed. 2015. Epub ahead print
|
|
|
2)Ugurbil K. Magnetic resonance imaging at ultrahigh fields. IEEE Trans Biomed Eng. 2014; 61: 1364-79
|
|
|
3)van der Kolk AG, Hendrikse J, Zwanenburg JJ, et al. Clinical applications of 7 T MRI in the brain. Eur J Radiol. 2013; 82: 708-18
|
|
|
4)Absinta M, Sati P, Gaitan MI, et al. Seven-Tesla phase imaging of acute multiple sclerosis lesions: A new window into the inflammatory process. Ann Neurol. 2013; 74: 669-78
|
|
|
5)Doan NT, van den Bogaard SJ, Dumas EM, et al. Texture analysis of ultrahigh field T2*-weighted MR images of the brain: Application to Huntingtonʼs disease. J Magn Reson Imaging. 2014; 39: 633-40
|
|
|
6)Goodwin JA, Kudo K, Shinohe Y, et al. Susceptibility-weighted phase imaging and oxygen extraction fraction measurement during sedation and sedation recovery using 7T MRI. J Neuro-imaging. 2015; 25: 575-81
|
|
|
7)Kudo K, Liu T, Murakami T, et al. Oxygen extraction fraction measurement using quantitative susceptibility mapping: comparison with positron emission tomography. J Cereb Blood Flow Metab. 2015. In press
|
|
|
8)Murata O, Sasaki N, Sasaki M, et al. Detection of cerebral microvascular lesions using 7 T MRI in patients with neuropsychiatric systemic lupus erythematosus. Neuroreport. 2015; 26: 27-32
|
|
|
9)Sato Y, Ogasawara K, Yoshida K, et al. Preoperative visualization of the marginal tentorial artery as an unusual collateral pathway in a patient with symptomatic bilateral vertebral artery occlusion undergoing arterial bypass surgery: A 7.0-T magnetic resonance imaging study. Surg Neurol Int. 2014; 5: 157
|
|
|
10)Sato H, Kawagishi K. Labyrinthine artery detection in patients with idiopathic sudden sensorineural hearing loss by 7-T MRI. Otolaryngol Head Neck Surg. 2014; 150: 455-9
|
|
|
11)Fujimoto K, Polimeni JR, van der Kouwe AJ, et al. Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T. Neuroimage. 2014; 90: 60-73
|
|
|
12)Kim J, Lenglet C, Duchin Y, et al. Semiautomatic segmentation of brain subcortical structures from high-field MRI. IEEE J Biomed Health Inform. 2014; 18: 1678-95
|
|
|
13)Hua J, Qin Q, van Zijl PC, et al. Whole-brain three-dimensional T2-weighted bold functional magnetic resonance imaging at 7 Tesla. Magn Reson Med. 2014; 72: 1530-40
|
|
|
14)van Egmond SL, Visser F, Pameijer FA, et al. In vivo imaging of the inner ear at 7T MRI: Image evaluation and comparison with 3T. Otol Neurotol. 2015; 36: 687-93
|
|
|
15)van der Jagt MA, Brink WM, Versluis MJ, et al. Visualization of human inner ear anatomy with high-resolution MR imaging at 7T: Initial clinical assessment. Am J Neuroradiol. 2015; 36: 378-83
|
|
|
16)Lindner T, Langner S, Graessl A, et al. High spatial resolution in vivo magnetic resonance imaging of the human eye, orbit, nervus opticus and optic nerve sheath at 7.0 Tesla. Exp Eye Res. 2014; 125: 89-94
|
|
|
17)Uwano I, Kudo K, Yamashita F, et al. Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T. Med Phys. 2014; 41: 022302
|
|
|
18)Padormo F, Beqiri A, Hajnal JV, et al. Parallel transmission for ultrahigh-field imaging. NMR Biomed. 2015. Epub ahead print
|
|
|
19)Schmitter S, Wu X, Adriany G, et al. Cerebral TOF angiography at 7T: Impact of B1 (+) shimming with a 16-channel transceiver array. Magn Reson Med. 2014; 71: 966-77
|
|
|
20)Schmitter S, Wu X, Auerbach EJ, et al. Seven-tesla time-of-flight angiography using a 16-channel parallel transmit system with power-constrained 3-dimensional spoke radiofrequency pulse design. Invest Radiol. 2014; 49: 314-25
|
|
|
21)Juchem C, Umesh Rudrapatna S, Nixon TW, et al. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla. Neuroimage. 2015; 105: 462-72
|
|
|
22)Frost R, Jezzard P, Douaud G, et al. Scan time reduction for readout-segmented EPI using simultaneous multislice acceleration: Diffusion-weighted imaging at 3 and 7 Tesla. Magn Reson Med. 2014. Epub ahead print
|
|
|
23)Boyacioglu R, Schulz J, Koopmans PJ, et al. Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7T. Neuroimage. 2015; 119: 352-61
|
|
|
24)Costagli M, Symms MR, Angeli L, et al. Assessment of silent T1-weighted head imaging at 7 T. Eur Radiol. 2015. Epub ahead print
|
|
|
25)Andreychenko A, Bluemink JJ, Raaijmakers AJ, et al. Improved RF performance of travelling wave MR with a high permittivity dielectric lining of the bore. Magn Reson Med. 2013; 70: 885-94
|
|
|
26)Rauschenberg J, Nagel AM, Ladd SC, et al. Multicenter study of subjective acceptance during magnetic resonance imaging at 7 and 9.4 T. Invest Radiol. 2014; 49: 249-59
|
|
|
27)Cosottini M, Frosini D, Biagi L, et al. Short-term side-effects of brain MR examination at 7 T: A single-centre experience. Eur Radiol. 2014; 24: 1923-8
|
|
|
28)Uwano I, Metoki T, Sendai F, et al. Assessment of sensations experienced by subjects during MR imaging examination at 7T. Magn Reson Med Sci. 2015; 14: 35-41
|
|
|
29)Oriso K, Kobayashi T, Sasaki M, et al. Impact of the static and radiofrequency magnetic fields produced by a 7T MR imager on metallic dental materials. Magn Reson Med Sci. 2015. Epub ahead print
|
|
|