1)Tsai HC, Zhang F, Adamantidis A, et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009; 324: 1080-4
|
|
|
2)Tan KR, Yvon C, Turiault M, et al. GABA neurons of the VTA drive conditioned place aversion. Neuron. 2012; 73: 1173-83
|
|
|
3)van Zessen R, Phillips JL, Budygin EA, et al. Activation of VTA GABA neurons disrupts reward consumption. Neuron. 2012; 73: 1184-94
|
|
|
4)Brown MT, Tan KR, OʼConnor EC, et al. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature. 2012; 492: 452-6
|
|
|
5)Tecuapetla F, Patel JC, Xenias H, et al. Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci. 2010; 30: 7105-10
|
|
|
6)Stuber GD, Hnasko TS, Britt JP, et al. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci. 2010; 30: 8229-33
|
|
|
7)Tritsch NX, Ding JB, Sabatini BL. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature. 2012; 490: 262-6
|
|
|
8)Lammel S, Steinberg EE, Foldy C, et al. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron. 2015; 85: 429-38
|
|
|
9)Stuber GD, Stamatakis AM, Kantak PA. Considerations when using cre-driver rodent lines for studying ventral tegmental area circuitry. Neuron. 2015; 85: 439-45
|
|
|
10)Danjo T, Yoshimi K, Funabiki K, et al. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens. Proc Natl Acad Sci U S A. 2014; 111: 6455-60
|
|
|
11)Wietek J, Wiegert JS, Adeishvili N, et al. Conversion of channelrhodopsin into a light-gated chloride channel. Science. 2014; 344: 409-12
|
|
|
12)Berndt A, Lee SY, Ramakrishnan C, et al. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science. 2014; 344: 420-4
|
|
|
13)Cohen JY, Haesler S, Vong L, et al. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature. 2012; 482: 85-8
|
|
|
14)Gunaydin LA, Grosenick L, Finkelstein JC, et al. Natural neural projection dynamics underlying social behavior. Cell. 2014; 157: 1535-51
|
|
|
15)Lee T, Cai LX, Lelyveld VS, et al. Molecular-level functional magnetic resonance imaging of dopaminergic signaling. Science. 2014; 344: 533-5
|
|
|
16)Schultz W. A neural substrate of prediction and reward. Science. 1997; 275: 1593-9
|
|
|
17)Steinberg EE, Keiflin R, Boivin JR, et al. A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci. 2013; 16: 966-73
|
|
|
18)Brischoux F, Chakraborty S, Brierley DI, et al. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A. 2009; 106: 4894-9
|
|
|
19)Howe MW, Tierney PL, Sandberg SG, et al. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature. 2013; 500: 575-9
|
|
|
20)Tye KM, Mirzabekov JJ, Warden MR, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013; 493: 537-41
|
|
|
21)Chaudhury D, Walsh JJ, Friedman AK, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013; 493: 532-6
|
|
|
22)Lammel S, Lim BK, Ran C, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature. 2012; 491: 212-7
|
|
|
23)Beier KT, Steinberg EE, DeLoach KE, et al. Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell. 2015; 162: 622-34
|
|
|
24)Kelley AE, Smith-Roe SL, Holahan MR. Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci U S A. 1997; 94: 12174-9
|
|
|
25)Smith-Roe SL, Kelley AE. Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci. 2000; 20: 7737-42
|
|
|
26)Flagel SB, Clark JJ, Robinson TE, et al. A selective role for dopamine in stimulus-reward learning. Nature. 2011; 469: 53-7
|
|
|
27)Darvas M, Wunsch AM, Gibbs JT, et al. Dopamine dependency for acquisition and performance of Pavlovian conditioned response. Proc Natl Acad Sci U S A. 2014; 111: 2764-9
|
|
|
28)Kupchik YM, Brown RM, Heinsbroek JA, et al. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci. 2015; 18: 1230-2
|
|
|
29)Nakanishi S, Hikida T, Yawata S. Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors. Neuroscience. 2014; 282C: 49-59
|
|
|
30)Yawata S, Yamaguchi T, Danjo T, et al. Pathway-specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens. Proc Natl Acad Sci U S A. 2012; 109: 12764-9
|
|
|
31)Hikida T, Kimura K, Wada N, et al. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron. 2010; 66: 896-907
|
|
|
32)Wickens JR, Reynolds JNJ, Hyland BI. Neural mechanisms of reward-related motor learning. Curr Opin Neurobiol. 2003; 13: 685-90
|
|
|
33)Shen W, Flajolet M, Greengard P, et al. Dichotomous dopaminergic control of striatal synaptic plasticity. Science. 2008; 321: 848-51
|
|
|
34)Black J, Belluzzi JD, Stein L. Reinforcement delay of one second severely impairs acquisition of brain self-stimulation. Brain Res. 1985; 359: 113-9
|
|
|
35)Matsuzaki M, Ellis-Davies GC, Nemoto T, et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci. 2001; 4: 1086-92
|
|
|
36)Yagishita S, Hayashi-Takagi A, Ellis-Davies GC, et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science. 2014; 345: 1616-20
|
|
|
37)Wieland S, Schindler S, Huber C, et al. Phasic Dopamine Modifies Sensory-Driven Output of Striatal Neurons through Synaptic Plasticity. J Neurosci. 2015; 35: 9946-56
|
|
|
38)Bocklisch C, Pascoli V, Wong JC, et al. Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science. 2013; 341: 1521-5
|
|
|
39)Otani S, Blond O, Desce JM, et al. Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex. Neuroscience. 1998; 85: 669-76
|
|
|
40)Kolomiets B, Marzo A, Caboche J, et al. Background dopamine concentration dependently facilitates long-term potentiation in rat prefrontal cortex through postsynaptic activation of extracellular signal-regulated kinases. Cereb Cortex. 2009; 19: 2708-18
|
|
|
41)Guo L, Xiong H, Kim JI, et al. Dynamic rewiring of neural circuits in the motor cortex in mouse models of Parkinsonʼs disease. Nat Neurosci. 2015; 18: 1299-309
|
|
|
42)Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci. 2007; 8: 844-58
|
|
|
43)Conrad KL, Tseng KY, Uejima JL, et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature. 2008; 454: 118-21
|
|
|
44)Lee KW, Kim Y, Kim AM, et al. Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci U S A. 2006; 103: 3399-404
|
|
|
45)Pascoli V, Terrier J, Espallergues J, et al. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature. 2014; 509: 459-64
|
|
|
46)Pascoli V, Turiault M, Luscher C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature. 2012; 481: 71-5
|
|
|
47)Creed M, Pascoli VJ, Luscher C. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science. 2015; 347: 659-64
|
|
|
48)Ahmari SE, Spellman T, Douglass NL, et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science. 2013; 340: 1234-9
|
|
|
49)Hayashi-Takagi A, Yagishita S, Nakamura M, et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature. 2015; 525: 333-8
|
|
|