1)Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med. 2000; 343: 269-80
|
|
|
2)Aarbiou J, van Schadewijk A, Stolk J, et al. Human neutrophil defensins and secretory leukocyte prote- inase inhibitor in squamous metaplastic epithelium of bronchial airways. Inflamm Res. 2004; 53: 230-8
|
|
|
3)Cosio BG, Mann B, Ito K, et al. Histone acetylase and deacetylase activity in alveolar macrophages and blood monocytes in asthma. Am J Respir Crit Care Med. 2004; 170: 141-7
|
|
|
4)Krauss-Etschmann S, Meyer KF, Dehmel S, et al. Inter- and transgenerational epigenetic inhe-ritance: evidence in asthma and COPD? Clin Epigenetics. 2015; 7: 53
|
|
|
5)Luger K, Mäder AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997; 389: 251-60
|
|
|
6)Petesch SJ, Lis JT. Overcoming the nucleosome barrier during transcript elongation. Trends Genet. 2012; 28: 285-94
|
|
|
7)Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, et al. Immunogenetics. Chromatin state dynamics during blood formation. Science. 2014; 345: 943-9
|
|
|
8)Venkatesh S, Workman JL. Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol. 2015; 16: 178-89
|
|
|
9)Burton A, Torres-Padilla ME. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol. 2014; 15: 723-34
|
|
|
10)Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci U S A. 2006; 103: 6428-35
|
|
|
11)Vardabasso C, Hasson D, Ratnakumar K, et al. Histone variants: emerging players in cancer biology. Cell Mol Life Sci. 2014; 71: 379-404
|
|
|
12)Hatch CL, Bonner WM. The human histone H2A.Z gene. Sequence and regulation. J Biol Chem. 1990; 265: 15211-8
|
|
|
13)Zlatanova J, Thakar A. H2A.Z: view from the top. Structure. 2008; 16: 166-79
|
|
|
14)Hendzel MJ, Davie JR. Nucleosomal histones of transcriptionally active/competent chromatin preferentially exchange with newly synthesized histones in quiescent chicken erythrocytes. Biochem J. 1990; 271: 67-73
|
|
|
15)Santisteban MS, Kalashnikova T, Smith MM. Histone H2A.Z regulats transcription and is partially redundant with nucleosome remodeling complexes. Cell. 2000; 103: 411-22
|
|
|
16)Adam M, Robert F, Larochelle M, et al. H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions. Mol Cell Biol. 2001; 21: 6270-9
|
|
|
17)Rangasamy D, Berven L, Ridgway P, et al. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. Embo J. 2003; 22: 1599-607
|
|
|
18)Rangasamy D, Greaves I, Tremethick DJ. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat Struct Mol Biol. 2004; 11: 650-5
|
|
|
19)Papamichos-Chronakis M, Krebs JE, Peterson CL. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev. 2006; 20: 2437-49
|
|
|
20)Latorre I, Chesney MA, Garrigues JM, et al. The DREAM complex promotes gene body H2A.Z for target repression. Genes Dev. 2015; 29: 495-500
|
|
|
21)Soboleva TA, Nekrasov M, Pahwa A, et al. A unique H2A histone variant occupies the transcriptional start site of active genes. Nat Struct Mol Biol. 2012; 19: 25-30
|
|
|
22)Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007; 129: 823-37
|
|
|
23)Meneghini MD, Wu M, Madhani HD. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell. 2003; 112: 725-36
|
|
|
24)Mizuguchi G, Shen X, Landry J, et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science. 2004; 303: 343-8
|
|
|
25)Ruhl DD, Jin J, Cai Y, et al. Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. Biochemistry. 2006; 45: 5671-7
|
|
|
26)Gévry N, Chan HM, Laflamme L, et al. p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev. 2007; 21: 1869-81
|
|
|
27)Obri A, Ouararhni K, Papin C, et al. ANP32E is a histone chaperone that removes H2A.Z from chromatin. Nature. 2014; 505: 648-53
|
|
|
28)Mao Z, Pan L, Wang W, et al. Anp32e, a higher eukaryotic histone chaperone directs preferential recognition for H2A.Z. Cell Res. 2014; 24: 389-99
|
|
|
29)Dryhurst D, Ishibashi T, Rose KL, et al. Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates. BMC Biol. 2009; 7: 86
|
|
|
30)eirin-Lopez JM, Gonzalez-Romero R, Dryhurst D, et al. The evolutionary differentiation of two histone H2A.Z variants in chordates (H2A.Z-1 and H2A.Z-2) is mediated by a stepwise mutation process that affects three amino acid residues. BMC Evol Biol. 2009; 9: 31
|
|
|
31)Matsuda R, Hori T, Kitamura H, et al. Identification and characterization of the two isoforms of the vertebrate H2A.Z histone variant. Nucleic Acids Res. 2010; 38: 4263-73
|
|
|
32)Faast R, Thonglairoam V, Schulz TC, et al. Histone variant H2A.Z is required for early mammalian development. Curr Biol. 2001; 11: 1183-7
|
|
|
33)Horikoshi N, Sato K, Shimada K, et al. Structural polymorphism in the L1 loop regions of human H2A.Z.1 and H2A.Z.2. Acta Crystallogr D Biol Crystallogr. 2013; 69: 2431-9
|
|
|
34)Nishibuchi I, Suzuki H, Kinomura A, et al. Reorganization of damaged chromatin by the exchange of histone variant H2A.Z-2. Int J Radiat Oncol Biol Phys. 2014; 89: 736-44
|
|
|
35)Dunican DS, McWilliam P, Tighe O, et al. Gene expression differences between the microsatellite instability (MIN) and chromosomal instability (CIN) phenotypes in colorectal cancer revealed by high-density cDNA array hybridization. Oncogene. 2002; 21: 3253-7
|
|
|
36)Gévry N, Hardy S, Jacques P-E, et al. Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev. 2009; 23: 1522-33
|
|
|
37)Hua S, Kallen CB, Dhar R, et al. Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression. Mol Syst Biol. 2008; 4: 188
|
|
|
38)Xi S, Xu H, Shan J, et al. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest. 2013; 123: 1241-61
|
|
|
39)Barrero CA, Perez-Leal O, Aksoy M, et al. Histone 3.3 participates in a self-sustaining cascade of apoptosis that contributes to the progression of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013; 188: 673-83
|
|
|
40)Tropberger P, Pott S, Keller C, et al. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell. 2013; 152: 859-72
|
|
|
41)Rossetto D, Avvakumov N, Côté J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics. 2012; 7: 1098-108
|
|
|
42)Ikura T, Tashiro S, Kakino A, et al. DNA Damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol. 2007; 27: 7028-40
|
|
|
43)Monni O, Knuutila S. 11q deletions in hematological malignancies. Leuk Lymphoma. 2011; 40: 259-66
|
|
|
44)Stankovic T, Stewart GS, Byrd P,et al. ATM mutations in sporadic lymphoid tumours. Leuk Lymphoma. 2012; 43: 1563-71
|
|
|
45)Thirman MJ, Gill HJ, Burnett RC, et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med. 1993; 329: 909-14
|
|
|
46)Parikh RA, white JS, Huang X, et al. Loss of distal 11q is associated with DNA repair deficiency and reduced sensitivity to ionizing radiation in head and neck squamous cell carcinoma. Genes Chromosomes Cancer. 2007; 46: 761-75
|
|
|
47)Srivastava N, Gochhait S, Gupta P, et al. Copy number alterations of the H2AFX gene in sporadic breast cancer patients. Cancer Genet Cytogenet. 2008; 180: 121-8
|
|
|
48)Novik KL, Spinelli JJ, Macarthur AC, et al. Genetic variation in H2AFX contributes to risk of non-Hodgkin lymphoma. Cancer epidemiol Biomarkers Prev. 2007; 16: 1098-106
|
|
|
49)Huang QM, Tomida S, Masuda Y, et al. Regulation of DNA polymerase POLD4 influences genomic instability in lung cancer. Cancer Res. 2010; 70: 8407-16
|
|
|
50)Matthaios D, Hountis P, Karakitsos P, et al. H2AX a promising biomarker for lung cancer: a review. Cancer Invest. 2013; 31: 582-99
|
|
|
51)Eirín-López JM, Ishibashi T, Ausió J. H2A.Bbd: a quickly evolving hypervariable mammalian histone that destabilizes nucleosomes in an acetylation-independent way. Faseb J. 2008; 22: 316-26
|
|
|
52)Ioudinkova ES, Barat A, Pichugin A, et al. Distinct distribution of ectopically expressed histone variants H2A.Bbd and MacroH2A in open and closed chromatin domains. PLoS One. 2012; 7: e47157
|
|
|
53)Tolstorukov MY, Goldman JA, Gilbert C, et al. Histone variant H2A.Bbd is associated with active transcription and mRNA processing in human cells. Mol Cell. 2012; 47: 596-607
|
|
|
54)Arimura Y, Kimura H, Oda T, et al. Structural basis of a nucleosome containing histone H2A.B/H2A.Bbd that transiently associates with reorganized chromatin. Sci Rep. 2013; 3: 3510
|
|
|
55)Bao Y, Konesky K, Park YJ, et al. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J. 2004; 23: 3314-24
|
|
|
56)Doyen CM, Montel F, Gautier T, et al. Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome. EMBO J. 2006; 25: 4234-44
|
|
|
57)Sugiyama M, Arimura Y, Shirayama K, et al. Distinct features of the histone core structure in nucleosomes containing the histone H2A.B variant. Biophys J. 2014; 106: 2206-13
|
|
|
58)Winkler C, Steingrube DS, Altermann W, et al. Hodgkin’s lymphoma RNA-transfected dendritic cells induce cancer/testis antigen-specific immune responses. Cancer Immunol Immunother. 2012; 61: 1769-79
|
|
|
59)Cantariño N, Douet J, Buschbeck M. MacroH2A-an epigenetic regulator of cancer. Cancer Lett. 2013; 336: 247-52
|
|
|
60)Talbert PB, Ahmad K, Almouzni G, et al. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin. 2012; 5: 7
|
|
|
61)Costanzi C, Pehrson JR. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature. 1998; 393: 599-601
|
|
|
62)Gamble MJ, Frizzell KM, Yang C, et al. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev. 2010; 24: 21-32
|
|
|
63)Kustatscher G, Hothorn M, Pugieux C, et al. Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol. 2005; 12: 624-5
|
|
|
64)Novikov L, Park JW, Chen H, et al. QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Mol Cell Biol. 2011; 31: 4244-55
|
|
|
65)Sporn JC, Kustatscher G, Hothorn T, et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene. 2009; 28: 3423-8
|
|
|
66)Chen H, Ruiz PD, Novikov L, et al. MacroH2A1.1 and PARP-1 cooperate to regulate transcription by promoting CBP-mediated H2B acetylation. Nat Struct Mol Biol. 2014; 21: 981-9
|
|
|
67)Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013; 502: 333-9
|
|
|
68)Buschbeck M, Uribesalgo I, Wibowo I, et al. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat Struct Mol Biol. 2009; 16: 1074-9
|
|
|