1)Network CGAR. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368: 2059-74
|
|
|
2)Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood. 2013; 121: 3563-72
|
|
|
3)Kiyoi H. Guest editorial: efficacy of and resistance to molecularly targeted therapy for myeloid malignancies. Int J Hematol. 2013; 97: 681-2
|
|
|
4)Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood. 2010; 116: 5089-102
|
|
|
5)Chin DW, Watanabe-Okochi N, Wang CQ, et al. Mouse models for core binding factor leukemia. Leukemia. 2015; 29: 1970-80
|
|
|
6)Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010; 115: 453-74
|
|
|
7)Paschka P, Dohner K. Core-binding factor acute myeloid leukemia: can we improve on HiDAC consolidation? Hematology Am Soc Hematol Educ Program. 2013; 2013: 209-19
|
|
|
8)Paschka P, Marcucci G, Ruppert AS, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8; 21): a Cancer and Leukemia Group B Study. J Clin Oncol. 2006; 24: 3904-11
|
|
|
9)Kihara R, Nagata Y, Kiyoi H, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014; 28: 1586-95
|
|
|
10)Paschka P. Core binding factor acute myeloid leukemia. Semi Oncol. 2008; 35: 410-7
|
|
|
11)Micol JB, Duployez N, Boissel N, et al. Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8; 21)/RUNX1-RUNX1T1 chromosomal translocations. Blood. 2014; 124: 1445-9
|
|
|
12)Welch JS, Ley TJ, Link DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012; 150: 264-78
|
|
|
13)Renneville A, Roumier C, Biggio V, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia. 2008; 22: 915-31
|
|
|
14)Ichikawa M, Yoshimi A, Nakagawa M, et al. A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol. 2013; 97: 726-34
|
|
|
15)Goyama S, Mulloy JC. Molecular pathogenesis of core binding factor leukemia: current knowledge and future prospects. Int J Hematol. 2011; 94: 126-33
|
|
|
16)Shigesada K, van de Sluis B, Liu PP. Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene. 2004; 23: 4297-307
|
|
|
17)Kuo YH, Zaidi SK, Gornostaeva S, et al. Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice. Blood. 2009; 113: 3323-32
|
|
|
18)Hyde RK, Zhao L, Alemu L, et al. Runx1 is required for hematopoietic defects and leukemogenesis in Cbfb-MYH11 knock-in mice. Leukemia. 2015; 29: 1771-8
|
|
|
19)Kwok C, Zeisig BB, Qiu J, et al. Transforming activity of AML1-ETO is independent of CBFbeta and ETO interaction but requires formation of homo-oligomeric complexes. Proc Natl Acad Sci U S A. 2009; 106: 2853-8
|
|
|
20)Roudaia L, Cheney MD, Manuylova E, et al. CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood. 2009; 113: 3070-9
|
|
|
21)Gorczynski MJ, Grembecka J, Zhou Y, et al. Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chem Biol. 2007; 14: 1186-97
|
|
|
22)Cunningham L, Finckbeiner S, Hyde RK, et al. Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFbeta interaction. Proc Natl Acad Sci U S A. 2012; 109: 14592-7
|
|
|
23)Illendula A, Pulikkan JA, Zong H, et al. Chemical biology. A small-molecule inhibitor of the aberrant transcription factor CBFbeta-SMMHC delays leukemia in mice. Science. 2015; 347: 779-84
|
|
|
24)Hessels D, Schalken JA. Recurrent gene fusions in prostate cancer: their clinical implications and uses. Curre Urol Rep. 2013; 14: 214-22
|
|
|
25)Grunewald TG, Bernard V, Gilardi-Hebenstreit P, et al. Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite. Nat Genet. 2015; 47: 1073-8
|
|
|