1)Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861-72
|
|
|
2)Zhou H, Ding S. Evolution of induced pluripotent stem cell technology. Curr Opin Hematol. 2010; 17: 276-80
|
|
|
3)Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell. 2008; 134: 877-86
|
|
|
4)Okita K, Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci. 2011; 366: 2198-207
|
|
|
5)Raab S, Klingenstein M, Liebau S, et al. A comparative view on human somatic cell sources for iPSC generation. Stem Cells Int. 2014; 2014: 768391
|
|
|
6)Loh YH, Agarwal S, Park IH, et al. Generation of induced pluripotent stem cells from human blood. Blood. 2009; 113: 5476-9
|
|
|
7)Okabe M, Otsu M, Ahn DH, et al. Definitive proof for direct reprogramming of hematopoietic cells to pluripotency. Blood. 2009; 114: 1764-7
|
|
|
8)Li HL, Fujimoto N, Sasakawa N, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports. 2015; 4: 143-54
|
|
|
9)Kim HS, Bernitz JM, Lee DF, et al. Genomic editing tools to model human diseases with isogenic pluripotent stem cells. Stem Cells Dev. 2014; 23: 2673-86
|
|
|
10)Tischkowitz MD, Hodgson SV. Fanconi anaemia. J Med Genet. 2003; 40: 1-10
|
|
|
11)Raya A, Rodriguez-Piza I, Guenechea G, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009; 460: 53-9
|
|
|
12)Muller LU, Milsom MD, Harris CE, et al. Overcoming reprogramming resistance of Fanconi anemia cells. Blood. 2012; 119: 5449-57
|
|
|
13)Yung SK, Tilgner K, Ledran MH, et al. Brief report: human pluripotent stem cell models of fanconi anemia deficiency reveal an important role for Fanconi anemia proteins in cellular reprogramming and survival of hematopoietic progenitors. Stem Cells. 2013; 31: 1022-9
|
|
|
14)Liu GH, Suzuki K, Li M, et al. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun. 2014; 5: 4330
|
|
|
15)Suzuki NM, Niwa A, Yabe M, et al. Pluripotent cell models of fanconi anemia identify the early pathological defect in human hemoangiogenic progenitors. Stem Cells Transl Med. 2015; 4: 333-8
|
|
|
16)Drachtman RA, Alter BP. Dyskeratosis congenita. Dermatol Clin. 1995; 13: 33-9
|
|
|
17)Agarwal S, Loh YH, McLoughlin EM, et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature. 2010; 464: 292-6
|
|
|
18)Batista LF, Pech MF, Zhong FL, et al. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature. 2011; 474: 399-402
|
|
|
19)Gu BW, Apicella M, Mills J, et al. Impaired telomere maintenance and decreased canonical WNT signaling but normal ribosome biogenesis in induced pluripotent stem cells from X-linked dyskeratosis congenita patients. PLoS One. 2015; 10: e0127414
|
|
|
20)Winkler T, Hong SG, Decker JE, et al. Defective telomere elongation and hematopoiesis from telomerase-mutant aplastic anemia iPSCs. J Clin Invest. 2013; 123: 1952-63
|
|
|
21)Shimamura A. Shwachman-Diamond syndrome. Semin Hematol. 2006; 43: 178-88
|
|
|
22)Tulpule A, Kelley JM, Lensch MW, et al. Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and hematopoietic dysfunction. Cell Stem Cell. 2013; 12: 727-36
|
|
|
23)Ballmaier M, Germeshausen M, Schulze H, et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood. 2001; 97: 139-46
|
|
|
24)Hirata S, Takayama N, Jono-Ohnishi R, et al. Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling. J Clin Invest. 2013; 123: 3802-14
|
|
|
25)Cherry AB, Gagne KE, McLoughlin EM, et al. Induced pluripotent stem cells with a mitochondrial DNA deletion. Stem Cells. 2013; 31: 1287-97
|
|
|
26)Lipton JM, Ellis SR. Diamond-Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol Oncol Clin North Am. 2009; 23: 261-82
|
|
|
27)Garcon L, Ge J, Manjunath SH, et al. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients. Blood. 2013; 122: 912-21
|
|
|
28)Ge J, Apicella M, Mills JA, et al. Dysregulation of the transforming growth factor beta pathway in induced pluripotent stem cells generated from patients with Diamond Blackfan anemia. PLoS One. 2015; 10: e0134878
|
|
|
29)Iizuka H, Kagoya Y, Kataoka K, et al. Targeted gene correction of RUNX1 in induced pluripotent stem cells derived from familial platelet disorder with propensity to myeloid malignancy restores normal megakaryopoiesis. Exp Hematol. 2015; 43: 849-57
|
|
|
30)Antony-Debre I, Manchev VT, Balayn N, et al. Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood. 2015; 125: 930-40
|
|
|
31)Sakurai M, Kunimoto H, Watanabe N, et al. Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia. 2014; 28: 2344-54
|
|
|
32)Connelly JP, Kwon EM, Gao Y, et al. Targeted correction of RUNX1 mutation in FPD patient-specific induced pluripotent stem cells rescues megakaryopoietic defects. Blood. 2014; 124: 1926-30
|
|
|
33)Arepally G, Rebbeck TR, Song W, et al. Evidence for genetic homogeneity in a familial platelet disorder with predisposition to acute myelogenous leukemia (FPD/AML). Blood. 1998; 92: 2600-2
|
|
|
34)Skokowa J, Germeshausen M, Zeidler C, et al. Severe congenital neutropenia: inheritance and pathophysiology. Curr Opin Hematol. 2007; 14: 22-8
|
|
|
35)Hiramoto T, Ebihara Y, Mizoguchi Y, et al. Wnt3a stimulates maturation of impaired neutrophils developed from severe congenital neutropenia patient-derived pluripotent stem cells. Proc Natl Acad Sci U S A. 2013; 110: 3023-8
|
|
|
36)Nayak RC, Trump LR, Aronow BJ, et al. Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells. J Clin Invest. 2015; 125: 3103-16
|
|
|
37)Morishima T, Watanabe K, Niwa A, et al. Genetic correction of HAX1 in induced pluripotent stem cells from a patient with severe congenital neutropenia improves defective granulopoiesis. Haematologica. 2014; 99: 19-27
|
|
|
38)Kumano K, Arai S, Hosoi M, et al. Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood. 2012; 119: 6234-42
|
|
|
39)Amabile G, Di Ruscio A, Muller F, et al. Dissecting the role of aberrant DNA methylation in human leukaemia. Nat Commun. 2015; 6: 7091
|
|
|
40)Kotini AG, Chang CJ, Boussaad I, et al. Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nat Biotechnol. 2015; 33: 646-55
|
|
|
41)Yamamoto S, Otsu M, Matsuzaka E, et al. Screening of drugs to treat 8p11 myeloproliferative syndrome using patient-derived induced pluripotent stem cells with fusion gene CEP110-FGFR1. PLoS One. 2015; 10: e0120841
|
|
|
42)Saliba J, Hamidi S, Lenglet G, et al. Heterozygous and homozygous JAK2(V617F) states modeled by induced pluripotent stem cells from myeloproliferative neoplasm patients. PLoS One. 2013; 8: e74257
|
|
|