1)Li S, Sanna S, Maschio A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007; 3: e194
|
|
|
2)中村 徹.痛風と高尿酸血症.日本内科学会雑誌.1996; 85: 1520-7
|
|
|
3)Ichida K, Matsuo H, Takada T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012; 3: 764
|
|
|
4)Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002; 417: 447-52
|
|
|
5)Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008; 283: 26834-8
|
|
|
6)安西尚彦,JUTABHA Promsuk, 阿部篤郎.新規尿酸トランスポーターと腎尿酸輸送の分子機構.In: Annual Review 腎臓 2014.東京: 中外医学社; 2014. p.28-34
|
|
|
7)Anzai N, Endou H. Urate transporters: an evolving field. Semin Nephrol. 2011; 31: 400-9
|
|
|
8)Quiñones Galvan A, Natali A, Baldi S, et al. Effect of insulin on uric acid excretion in humans. Am J Physiol. 1995; 268: E1-5
|
|
|
9)遠藤 仁,宮崎博喜,安西尚彦.新規尿酸トランスポーターURAT1の同定と尿酸研究の現況.蛋白質 核酸 酵素.2003; 48: 18-25
|
|
|
10)Gotoh M, Li C, Yatoh M, et al. Serum uric acid concentrations in type 2 diabetes: its significant relationship to serum 1,5-anhydroglucitol concentrations. Endocr Regul. 2005; 39: 119-25
|
|
|
11)Koga M, Murai J, Saito H, et al. Close relationship between serum concentrations of 1,5-anhydroglucitol and uric acid in nondiabetic male subjects implies common renal transport system. Clin Chim Acta. 2009; 410: 70-3
|
|
|
12)Ouchi M, Oba K, Aoyama J, et al. Serum uric acid in relation to serum 1,5-anhydroglucitol levels in patients with and without type 2 diabetes mellitus. Clin Biochem. 2013; 46: 1436-41
|
|
|
13)Koga M. 1,5-Anhydroglucitol and glycated albumin in glycemia. Adv Clin Chem. 2014; 64: 269-301
|
|
|
14)文部科学省科学研究費補助金特定領域研究.生体膜トランスポートソームの分子構築と生理機能.http://www.med.osaka-u.ac.jp/pub/pharma1/transportsome/index.html
|
|
|
15)安西尚彦.尿酸降下薬の分子標的としての腎尿酸トランスポートソーム.医学のあゆみ.2011; 236: 863-4
|
|
|
16)Anzai N, Miyazaki H, Noshiro R, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J Biol Chem. 2004; 279: 45942-50
|
|
|
17)Franse LV, Pahor M, Di Bari M, et al. Serum uric acid, diuretic treatment and risk of cardiovascular events in the Systolic Hypertension in the Elderly Program (SHEP). J Hypertens. 2000; 18: 1149-54
|
|
|
18)Høieggen A, Alderman MH, Kjeldsen SE, et al. The impact of serum uric acid on cardiovascular outcomes in the LIFE study. Kidney Int. 2004; 65: 1041-9
|
|
|
19)Jutabha P, Anzai N, Kitamura K, et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J Biol Chem. 2010; 285: 35123-32
|
|
|
20)安西尚彦.利尿薬による薬物性高尿酸血症の発症機序.医薬の門.2012; 52: 229-33
|
|
|
21)Polgar O, Robey RW, Bates SE. ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol. 2008; 4: 1-15
|
|
|
22)Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med. 2009; 1: 5ra11
|
|
|
23)Yano H, Tamura Y, Kobayashi K, et al. Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease. Clin Exp Nephrol. 2014; 18: 50-5
|
|
|
24)Huls M, Brown CD, Windass AS, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 2008; 73: 220-5
|
|
|
25)Gunness P, Aleksa K, Koren G. Acyclovir is a substrate for the human breast cancer resistance protein (BCRP/ABCG2): implications for renal tubular transport and acyclovir-induced nephrotoxicity. Can J Physiol Pharmacol. 2011; 89: 675-80
|
|
|