1)Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990; 248: 73-6
|
|
|
2)Denk W, Svoboda K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron. 1997; 18: 351-7
|
|
|
3)金子 雄,菊田順一.骨髄のin vivoイメージング 正立2光子励起顕微鏡を用いて.In: 石井 優,編.in vivoイメージング実験プロトコール.東京: 羊土社; 2013. p. 127-34
|
|
|
4)Ishii M, Egen JG, Klauschen F, et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature. 2009; 458: 524-8
|
|
|
5)Ishii M, Kikuta J, Shimazu Y, et al. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med. 2010; 207: 2793-8
|
|
|
6)Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol. 2005; 5: 560-70
|
|
|
7)Cyster JG. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol. 2005; 23: 127-59
|
|
|
8)Maeda Y, Seki N, Sato N, et al. Sphingosine 1-phosphate receptor type 1 regulates egress of mature T cells from mouse bone marrow. IntImmunol. 2010; 22: 515-25
|
|
|
9)Plum LA, DeLuca HF. Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov. 2010; 9: 941-55
|
|
|
10)Roodman GD, Ibbotson KJ, MacDonald BR, et al. 1,25-Dihydroxyvitamin D3 causes formation of multinucleated cells with several osteoclast characteristics in cultures of primate marrow. Proc Natl Acad Sci U S A. 1985; 82: 8213-7
|
|
|
11)Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998; 95: 3597-602
|
|
|
12)Suda T, Takahashi F, Takahashi N. Bone effects of vitamin D - Discrepancies between in vivo and in vitro studies. Arch Biochem Biophys. 2012; 523: 22-9
|
|
|
13)Kikuta J, Kawamura S, Okiji F, et al. Sphingosine-1-phosphate-mediated osteoclast precursor monocyte migration is a critical point of control in antibone-resorptive action of active vitamin D. Proc Natl Acad Sci U S A. 2013; 110: 7009-13
|
|
|
14)Toyomura T, Oka T, Yamaguchi C, et al. Three subunit a isoforms of mouse vacuolar H(+)-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation. J Biol Chem. 2000; 275: 8760-5
|
|
|
15)Toyomura T, Murata Y, Yamamoto A, et al. From lysosomes to the plasma membrane: localization of vacuolar-type H+-ATPase with the a3 isoform during osteoclast differentiation. J Biol Chem. 2003; 278: 22023-30
|
|
|
16)Sun-Wada GH, Tabata H, Kawamura N, et al. Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification. J Cell Sci. 2009; 122(pt 14): 2504-13
|
|
|
17)Kikuta J, Wada Y, Kowada T, et al. Dynamic visualization of RANKL and Th17-mediated osteoclast function. J Clin Invest. 2013; 123: 866-73
|
|
|
18)Kowada T, Kikuta, J, Kubo A, et al. In vivo fluorescence imaging of bone-resorbing osteoclasts. J Am Chem Soc. 2011; 33: 17772-6
|
|
|
19)Tomimori Y, Mori K, Koide M, et al. Evaluation of pharmaceuticals with a novel 50-hour animal model of bone loss. J Bone Miner Res. 2009; 24: 1194-205
|
|
|
20)Russell RG, Xia Z, Dunford JE, et al. Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci. 2007; 1117: 209-57
|
|
|
21)Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003; 4: 638-49
|
|
|