1)Robinson AM, Williamson DH. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 1980; 60: 143-87
|
|
|
2)Guzmán M, Geelen MJ. Regulation of fatty acid oxidation in mammalian liver. Biochim Biophys Acta. 1993; 1167: 227-41
|
|
|
3)Wilder RM. The effects of ketonemia on the course of epilepsy. Mayo Clin Proc. 1921; 2: 307-8
|
|
|
4)Conklin HW. Cause and treatment of epilepsy. J Am Osteopath Assoc. 1922; 26: 11-4
|
|
|
5)Lutas A, Yellen G. The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci. 2013; 36: 32-40
|
|
|
6)Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids. 2004; 70: 309-19
|
|
|
7)Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol. 2012; 3: 59
|
|
|
8)Soudijn W, van Wijngaarden I, Ijzerman AP. Nicotinic acid receptor subtypes and their ligands. Med Res Rev. 2007; 27: 417-33
|
|
|
9)Rahman M, Muhammad S, Khan MA, et al. The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat Commun. 2014; 5: 3944
|
|
|
10)Chen H, Assmann JC, Krenz A, et al. Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarateʼs protective effect in EAE. J Clin Invest. 2014; 124: 2188-92
|
|
|
11)Guzmán M, Blázquez C. Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Essent Fatty Acids. 2004; 70: 287-92
|
|
|
12)Guzmán M, Blázquez C. Is there an astrocyte-neuron ketone body shuttle? Trends Endocrinol Metab. 2001; 12: 169-73
|
|
|
13)髙橋愼一.血液脳関門および脳循環・代謝調節とアストロサイト.実験医学.2013; 31: 2195-203
|
|
|
14)髙橋愼一,安部貴人,伊澤良兼,他.NVUにおけるBBBの役割とcellular metabolic compartment. 脳循環代謝.2013; 24: 75-82
|
|
|
15)Blázquez C, Sánchez C, Velasco G, et al. Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. J Neurochem. 1998; 71: 1597-606
|
|
|
16)Blázquez C, Woods A, de Ceballos ML, et al. The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes. J Neurochem. 1999; 73: 1674-82
|
|
|
17)McKenna MC. Substrate competition studies demonstrate oxidative metabolism of glucose, glutamate, glutamine, lactate and 3-hydroxybutyrate in cortical astrocytes from rat brain. Neurochem Res. 2012; 37: 2613-26
|
|
|
18)Takahashi S, Iizumi T, Mashima K, et al. Roles and regulation of ketogenesis in cultured astroglia and neurons under hypoxia and hypoglycemia. ASN Neuro. 2014; 6
|
|
|
19)Koper JW, Lopes-Cardozo M, Van Golde LM. Preferential utilization of ketone bodies for the synthesis of myelin cholesterol in vivo. Biochim Biophys Acta. 1981; 666: 411-7
|
|
|
20)Koper JW, Zeinstra EC, Lopes-Cardozo M, et al. Acetoacetate and glucose as substrates for lipid synthesis by rat brain oligodendrocytes and astrocytes in serum-free culture. Biochim Biophys Acta. 1984; 796: 20-6
|
|
|
21)Lopes-Cardozo M, Larsson OM, Schousboe A. Acetoacetate and glucose as lipid precursors and energy substrates in primary cultures of astrocytes and neurons from mouse cerebral cortex. J Neurochem. 1986; 46: 773-8
|
|
|
22)Sykes JE, Lopes-Cardozo M, Van Den Bergh SG. Substrate utilization for energy production and lipid synthesis in oligodendrocyte-enriched cultures prepared from rat brain. Neurochem Int. 1986; 8: 67-75
|
|
|
23)Clarke DD, Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel G, Agranoff B, Albers RW, Fisher S, editors. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 6th ed. Philadelphia: Lippincott-Raven; 1999. p.637-69
|
|
|
24)Dienel GA. Energy metabolism in the brain. In: Byrne JH, Roberts JL, editors. From molecules to networks: an introduction to cellular and molecular neuroscience, 2nd ed. London: Acadmic Press; 2009. p.49-110
|
|
|
25)Laeger T, Metges CC, Kuhla B. Role of beta-hydroxybutyric acid in the central regulation of energy balance. Appetite. 2010; 54: 450-5
|
|
|
26)Page MA, Krebs HA, Williamson DH. Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats. Biochem J. 1971; 121: 49-53
|
|
|
27)Klee CB, Sokoloff L. Changes in D(-)-β-hydroxybutyric dehydrogenase activity during brain maturation in the rat. J Biol Chem. 1967; 242: 3880-3
|
|
|
28)Land JM, Booth RF, Berger R, et al. Development of mitochondrial energy metabolism in rat brain. Biochem J. 1977; 164: 339-48
|
|
|
29)Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963; 1: 785-9
|
|
|
30)髙橋愼一.卒中専門医のためのミクロ解剖学: アストロサイト(その機能と虚血時の反応).分子脳血管病.2006; 5: 82-91
|
|
|
31)Cardell M, Koide T, Wieloch T. Pyruvate dehydrogenase activity in the rat cerebral cortex following cerebral ischemia. J Cereb Blood Flow Metab. 1989; 9: 350-7
|
|
|
32)Fukuchi T, Katayama Y, Kamiya T, et al. The effect of duration of cerebral ischemia on brain pyruvate dehydrogenase activity, energy metabolites, and blood flow during reperfusion in gerbil brain. Brain Res. 1998; 792: 59-65
|
|
|
33)Masuda R, Monahan JW, Kashiwaya Y. D-beta-hydroxybutyrate is neuroprotective against hypoxia in serum-free hippocampal primary cultures. J Neurosci Res. 2005; 80: 501-9
|
|
|
34)Suzuki M, Suzuki M, Sato K, et al. Effect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn J Pharmacol. 2001; 87: 143-50
|
|
|
35)Suzuki M, Suzuki M, Kitamura Y, et al. Beta-hydroxybutyrate, a cerebral function improving agent, protects rat brain against ischemic damage caused by permanent and transient focal cerebral ischemia. Jpn J Pharmacol. 2002; 89: 36-43
|
|
|
36)Puchowicz MA, Zechel JL, Valerio J, et al. Neuroprotection in diet-induced ketotic rat brain after focal ischemia. J Cereb Blood Flow Metab. 2008; 28: 1907-16
|
|
|
37)Edmond J, Robbins RA, Bergstrom JD, et al. Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res. 1987; 18: 551-61
|
|
|
38)Hothersall JS, Baquer N, Greenbaum AL, et al. Alternative pathways of glucose utilization in brain. Changes in the pattern of glucose utilization in brain during development and the effect of phenazine methosulfate on the integration of metabolic routes. Arch Biochem Biophys. 1979; 198: 478-92
|
|
|
39)Dhopeshwarkar GA, Mead JF. Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. Adv Lipid Res. 1973; 11: 109-42
|
|
|
40)Smith QR, Nagura H. Fatty acid uptake and incorporation in brain: studies with the perfusion model. J Mol Neurosci. 2001; 16: 167-72; discussion 215-21
|
|
|
41)Mitchell RW, On NH, Del Bigio MR, et al. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J Neurochem. 2011; 117: 735-46
|
|
|
42)Bixel MG, Hamprecht B. Generation of ketone bodies from leucine by cultured astroglial cells. J Neurochem. 1995; 65: 2450-61
|
|
|
43)Fulgencio JP, Kohl C, Girard J, et al. Effect of metformin on fatty acid and glucose metabolism in freshly isolated hepatocytes and on specific gene expression in cultured hepatocytes. Biochem Pharmacol. 2001; 62: 439-46
|
|
|
44)Danial NN, Hartman AL, Stafstrom CE, et al. How does the ketogenic diet work? Four potential mechanisms. J Child Neurol. 2013; 28: 1027-33
|
|
|
45)Levy RG Cooper PN, Giri P. Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev. 2012 Mar 14; 3: CD001903
|
|
|
46)Payne NE, Cross JH, Sander JW, et al. The ketogenic and related diets in adolescents and adults-a review. Epilepsia. 2011; 52: 1941-8
|
|
|
47)Thakur KT, Probasco JC, Hocker SE, et al. Ketogenic diet for adults in super-refractory status epilepticus. Neurology. 2014; 82: 665-70
|
|
|
48)Gano L, Patel M, Rho JM. Ketogenic Diets, Mitochondria and Neurological Diseases. J Lipid Res. 2014; 55: 2211-28
|
|
|
49)Hashim SA, Vanitallie TB. Ketone body therapy: From ketogenic diet to oral administration of ketone ester. J Lipid Res. 2014; 55: 1818-26
|
|
|
50)Veech RL. Ketone ester effects on metabolism and transcription. J Lipid Res. 2014; 55: 2004-6
|
|
|
51)Kashiwaya Y, Takeshima T, Mori N, et al. D-beta-hydroxybutyrate protects neurons in models of Alzheimerʼs and Parkinsonʼs disease. Proc Natl Acad Sci U S A. 2000; 97: 5440-4
|
|
|
52)Tieu K, Perier C, Caspersen C, et al. D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest. 2003; 112: 892-901
|
|
|
53)Krikorian R, Shidler MD, Dangelo K, et al. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol Aging. 2012; 33: 425
|
|
|
54)Brownlow ML, Benner L, DʼAgostino D, et al. Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimerʼs pathology. PLoS One. 2013; 8: e75713
|
|
|
55)Lim S, Chesser AS, Grima JC, et al. D-β-hydroxybutyrate is protective in mouse models of Huntingtonʼs disease. PLoS One. 2011; 6: e24620
|
|
|
56)Zhao W, Varghese M, Vempati P, et al. Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease. PLoS One. 2012; 7: e49191
|
|
|
57)Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013; 339: 211-4
|
|
|
58)Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009; 459: 55-60
|
|
|
59)Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimerʼs disease and other disorders. Nat Rev Neurosci. 2011; 12: 723-38
|
|
|
60)Friedrichs P, Saremi B, Winand S, et al. Energy and metabolic sensing G protein-coupled receptors during lactation-induced changes in energy balance. Domest Anim Endocrinol. 2014; 48: 33-41
|
|
|
61)Tunaru S1, Kero J, Schaub A, et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med. 2003; 9: 352-5
|
|
|
62)Parson HK1, Harati H, Cooper D, et al. Role of prostaglandin D2 and the autonomic nervous system in niacin-induced flushing. J Diabetes. 2013; 5: 59-67
|
|
|
63)Liu M, Eguchi N, Yamasaki Y, et al. Protective role of hematopoietic prostaglandin D synthase in transient focal cerebral ischemia in mice. Neuroscience. 2009; 163: 296-307
|
|
|
64)Taniguchi H, Mohri I, Okabe-Arahori H, et al. Prostaglandin D2 protects neonatal mouse brain from hypoxic ischemic injury. J Neurosci. 2007; 27: 4303-12
|
|
|
65)Torhan AS, Cheewatrakoolpong B, Kwee L, et al. Cloning and characterization of the hamster and guinea pig nicotinic acid receptors. J Lipid Res. 2007; 48: 2065-71
|
|
|
66)Miller CL, Dulay JR. The high-affinity niacin receptor HM74A is decreased in the anterior cingulate cortex of individuals with schizophrenia. Brain Res Bull. 2008; 77: 33-41
|
|
|
67)Tang H, Lu JY, Zheng X, et al. The psoriasis drug monomethylfumarate is a potent nicotinic acid receptor agonist. Biochem Biophys Res Commun. 2008; 375: 562-5
|
|
|
68)髙橋愼一,中原 仁,鈴木則宏.フマル酸ジメチル (BG-12). Clin Neurosci. 2014; 32: 1287-90
|
|
|