1)Schmahmann JD, Sherman JC. Cerebellar cognitive affective syndrome. Int Rev Neurobiol. 1997; 41: 433-40
|
|
|
2)Koziol LF, Budding D, Andreasen N, et al. Consensus paper: the cerebellumʼs role in movement and cognition. Cerebellum. 2014; 13: 151-77
|
|
|
3)Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008; 9: 304-13
|
|
|
4)Mariën P, Ackermann H, Adamaszek M, et al. Consensus paper: Language and the cerebellum: an ongoing enigma. Cerebellum. 2014; 13: 386-410
|
|
|
5)Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013; 80: 7-15
|
|
|
6)Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009; 32: 413-34
|
|
|
7)Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013; 17: 241-54
|
|
|
8)Hoshi E, Tremblay L, Féger J, et al. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005; 8: 1491-3
|
|
|
9)Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A. 2010; 107: 8452-6
|
|
|
10)Petersen SE, Fox PT, Posner MI, et al. Positron emission tomographic studies of the processing of singe words. J Cogn Neurosci. 1989; 1: 153-70
|
|
|
11)Stoodley C, Valera E, Schmahmann J. An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol. 2010; 23: 65-79
|
|
|
12)Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012; 59: 1560-70
|
|
|
13)Ogawa K, Imamizu H. Human sensorimotor cortex represents conflicting visuomotor mappings. J Neurosci. 2013; 33: 6412-22
|
|
|
14)Imamizu H, Kawato M. Cerebellar internal models: implications for the dexterous use of tools. Cerebellum. 2012; 11: 325-35
|
|
|
15)Suenaga M, Kawai Y, Watanabe H, et al. Cognitive impairment in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry. 2008; 79: 496-9
|
|
|
16)Cooper FE, Grube M, Elsegood KJ, et al. Europe PMC Funders Group The contribution of the cerebellum to cognition in Spinocerebellar Ataxia Type 6. Behav Neurol. 2014; 23: 3-15
|
|
|
17)Ivry R, Diener H. Impaired Velocity Perception in Patients with lesions of the cerebellum. J Cogn Neurosci. 1991; 3: 355-66
|
|
|
18)Händel B, Thier P, Haarmeier T. Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebro-cortical activity. J Neurosci. 2009; 29: 15126-33
|
|
|
19)Gooch C, Wiener M, Wencil E, et al. Interval timing disruptions in subjects with cerebellar lesions. Neuropsychologia. 2010; 48: 1022-31
|
|
|
20)Ivry RB, Spencer RMC. The neural representation of time. Curr Opin Neurobiol. 2004; 14: 225-32
|
|
|
21)Grube M, Cooper FE, Chinnery PF, et al. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci U S A. 2010; 107: 11597-601
|
|
|
22)Teki S, Grube M, Griffiths TD. A unified model of time perception accounts for duration-based and beat-based timing mechanisms. Front Integr Neurosci. 2011; 5: 90
|
|
|
23)Allman MJ, Teki S, Griffiths TD, et al. Properties of the internal clock: first- and second-order principles of subjective time. Annu Rev Psychol. 2014; 65: 743-71
|
|
|
24)Roth MJ, Synofzik M, Lindner A. The cerebellum optimizes perceptual predictions about external sensory events. Curr Biol. 2013; 23: 930-5
|
|
|
25)Synofzik M, Lindner A, Thier P. The cerebellum updates predictions about the visual consequences of oneʼs behavior. Curr Biol. 2008; 18: 814-8
|
|
|
26)Bailey A, Luthert P, Dean A, et al. A clinicopathological study of autism. Brain. 1998; 121: 889-905
|
|
|
27)Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci. 2014; 8: 1-17
|
|
|
28)Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010; 33: 89-108
|
|
|
29)Ikeda A, Shibasaki H, Nagamine T, et al. Dissociation between contingent negative variation and Bereitschaftspotential in a patient with cerebellar efferent lesion. Electroencephalogr Clin Neurophysiol. 1994; 90: 359-64
|
|
|
30)Ikeda A, Shibasaki H, Kaji R, et al. Dissociation between contingent negative variation (CNV) and Bereitschaftspotentia. Electroencephalogr Clin Neurophysiol. 1997; 102: 142-51
|
|
|
31)Nagai Y, Critchley HD, Featherstone E, et al. Brain activity relating to the contingent negative variation: an fMRI investigation. Neuroimage. 2004; 21: 1232-41
|
|
|
32)Lee IH, Seitz AR, Assad JA. Activity of tonically active neurons in the monkey putamen during initiation and withholding of movement. J Neurophysiol. 2006; 95: 2391-403
|
|
|
33)Turner RS, Anderson ME. Context-dependent modulation of movement-related discharge in the primate globus pallidus. J Neurosci. 2005; 25: 2965-76
|
|
|
34)Ashmore RC, Sommer MA. Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum. J Neurophysiol. 2013; 109: 2129-44
|
|
|
35)Tanaka M. Cognitive signals in the primate motor thalamus predict saccade timing. J Neurosci. 2007; 27: 12109-18
|
|
|
36)Cerminara NL, Apps R, Marple-Horvat DE. An internal model of a moving visual target in the lateral cerebellum. J Physiol. 2009; 587: 429-42
|
|
|
37)Kase M, Noda H, Suzuki D, et al. Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. Science. 1979; 205: 717-20
|
|
|
38)Stone LS, Lisberger SG. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. J Neurophysiol. 1990; 63: 1241-61
|
|
|
39)Assad J, Maunsell J. Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature. 1995; 373: 518-21
|
|
|
40)Akao T, Kurkin S, Fukushima J, et al. Visual and vergence eye movement-related responses of pursuit neurons in the caudal frontal eye fields to motion-in-depth stimuli. Exp brain Res. 2005; 164: 92-108
|
|
|
41)Sakai K, Hikosaka O, Miyauchi S, et al. Neural representation of a rhythm depends on its interval ratio. J Neurosci. 1999; 19: 10074-81
|
|
|
42)Konoike N, Kotozaki Y, Miyachi S, et al. Rhythm information represented in the fronto-parieto-cerebellar motor system. Neuroimage. 2012; 63: 328-38
|
|
|
43)Ohmae S, Uematsu A, Tanaka M. Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. J Neurosci. 2013; 33: 15432-41
|
|
|