1)Baribeau DA, Anagnostou E. A comparison of neuroimaging findings in childhood onset schizophrenia and autism spectrum disorder: a review of the literature. Front Psychiatry. 2013; 4: 175
|
|
|
2)Wibom R, Lasorsa FM, Tohonen V, et al. AGC1 deficiency associated with global cerebral hypomyelination. N Engl J Med. 2009; 361: 489-95
|
|
|
3)Gallo V, Deneen B. Glial development: the crossroads of regeneration and repair in the CNS. Neuron. 2014; 83: 283-308
|
|
|
4)Hoistad M, Segal D, Takahashi N, et al. Linking white and grey matter in schizophrenia: oligodendrocyte and neuron pathology in the prefrontal cortex. Front Neuroanat. 2009; 3: 9
|
|
|
5)Miller DJ, Duka T, Stimpson CD, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci U S A. 2012; 109: 16480-5
|
|
|
6)Bengtsson SL, Nagy Z, Skare S, et al. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci. 2005; 8: 1148-50
|
|
|
7)Takeuchi H, Sekiguchi A, Taki Y, et al. Training of working memory impacts structural connectivity. J Neurosci. 2010; 30: 3297-303
|
|
|
8)Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008; 31: 361-70
|
|
|
9)Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron. 2008; 60: 430-40
|
|
|
10)Di Rocco M, Biancheri R, Rossi A, et al. Genetic disorders affecting white matter in the pediatric age. Am J Med Genet B Neuropsychiatr Genet. 2004; 129B: 85-93
|
|
|
11)Volpe JJ, Kinney HC, Jensen FE, et al. The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci. 2011; 29: 423-40
|
|
|
12)Widom CS, DuMont K, Czaja SJ. A prospective investigation of major depressive disorder and comorbidity in abused and neglected children grown up. Arch Gen Psychiatry. 2007; 64: 49-56
|
|
|
13)Makinodan M, Rosen KM, Ito S, et al. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science. 2012; 337: 1357-60
|
|
|
14)Liu J, Dietz K, DeLoyht JM, et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci. 2012; 15: 1621-3
|
|
|
15)van der Knaap MS, Pronk JC, Scheper GC. Vanishing white matter disease. Lancet Neurol. 2006; 5: 413-23
|
|
|
16)Jeste SS, Geschwind DH. Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol. 2014; 10: 74-81
|
|
|
17)Kikinis Z, Asami T, Bouix S, et al. Reduced fractional anisotropy and axial diffusivity in white matter in 22q11.2 deletion syndrome: a pilot study. Schizophr Res. 2012; 141: 35-9
|
|
|
18)Owen JP, Chang YS, Pojman NJ, et al. Aberrant white matter microstructure in children with 16p11.2 deletions. J Neurosci. 2014; 34: 6214-23
|
|
|
19)Durdiakova J, Warrier V, Baron-Cohen S, et al. Single nucleotide polymorphism rs6716901 in SLC25A12 gene is associated with Asperger syndrome. Mol Autism. 2014; 5: 25
|
|
|
20)Jalil MA, Begum L, Contreras L, et al. Reduced N-acetylaspartate levels in mice lacking aralar, a brain- and muscle-type mitochondrial aspartate-glutamate carrier. J Biol Chem. 2005; 280: 31333-9
|
|
|
21)Sakurai T, Ramoz N, Barreto M, et al. Slc25a12 disruption alters myelination and neurofilaments: a model for a hypomyelination syndrome and childhood neurodevelopmental disorders. Biol Psychiatry. 2010; 67: 887-94
|
|
|
22)Falk MJ, Li D, Gai X, et al. AGC1 deficiency causes infantile epilepsy, abnormal myelination, and reduced N-acetylaspartate. JIMD Rep. 2014; 14: 77-85
|
|
|
23)Wake H, Lee PR, Fields RD. Control of local protein synthesis and initial events in myelination by action potentials. Science. 2011; 333: 1647-51
|
|
|
24)Gibson EM, Purger D, Mount CW, et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science. 2014; 344: 1252304
|
|
|
25)Pajevic S, Basser PJ, Fields RD. Role of myelin plasticity in oscillations and synchrony of neuronal activity. Neuroscience. 2014; 276: 135-47
|
|
|
26)Zemmar A, Weinmann O, Kellner Y, et al. Neutralization of nogo-a enhances synaptic plasticity in the rodent motor cortex and improves motor learning in vivo. J Neurosci. 2014; 34: 8685-98
|
|
|