1)Kuramoto E, Fujiyama F, Nakamura KC, et al. Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei. Eur J Neurosci. 2011; 33: 95-109
|
|
|
2)Deniau JM, Kita H, Kitai ST. Patterns of termination of cerebellar and basal ganglia efferents in the rat thalamus. Strictly segregated and partly overlapping projections. Neurosci Lett. 1992; 144: 202-6
|
|
|
3)Jones EG. The thalamus. 2nd ed. Cambridge: Cambridge University Press; 2007. p.1708
|
|
|
4)Sakai ST, Inase M, Tanji J. Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J Comp Neurol. 1996; 368: 215-28
|
|
|
5)Nakamura KC, Sharott A, Magill PJ. Temporal coupling with cortex distinguishes spontaneous neuronal activities in identified basal ganglia-recipient and cerebellar-recipient zones of the motor thalamus. Cereb Cortex. 2014; 24: 81-97
|
|
|
6)Kuramoto E, Furuta T, Nakamura KC, et al. Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb Cortex. 2009; 19: 2065-77
|
|
|
7)Kuramoto E, Ohno S, Furuta T, et al. Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior-ventral lateral nuclear complex in the rat. Cereb Cortex. 2013 Aug 22. [Epub ahead of print]
|
|
|
8)Ushimaru M, Ueta Y, Kawaguchi Y. Differentiated participation of thalamocortical subnetworks in slow/spindle waves and desynchronization. J Neurosci. 2012; 32: 1730-46
|
|
|
9)Edgerton JR, Jaeger D. Optogenetic activation of nigral inhibitory inputs to motor thalamus in the mouse reveals classic inhibition with little potential for rebound activation. Front Cell Neurosci. 2014; 8: 36
|
|
|
10)Hooks BM, Mao T, Gutnisky DA, et al. Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J Neurosci. 2013; 33: 748-60
|
|
|
11)Cruikshank SJ, Ahmed OJ, Stevens TR, et al. Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci. 2012; 32: 17813-23
|
|
|
12)Person AL, Perkel DJ. Unitary IPSPs drive precise thalamic spiking in a circuit required for learning. Neuron. 2005; 46: 129-40
|
|
|
13)Person AL, Perkel DJ. Pallidal neuron activity increases during sensory relay through thalamus in a songbird circuit essential for learning. J Neurosci. 2007; 27: 8687-98
|
|
|
14)Goldberg JH, Fee MS. A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds. Nat Neurosci. 2012; 15: 620-7
|
|
|
15)Voogd J. Cerebellum. In: Paxinos G, editor. The rat nervous system. 3rd ed. San Diego: Elsevier Academic Press; 2004. p.205-42
|
|
|
16)Rovó Z, Ulbert I, Acsády L. Drivers of the primate thalamus. J Neurosci. 2012; 32: 17894-908
|
|
|
17)Sherman SM, Guillery R. Exploring the thalamus and its role in cortical function. 2nd ed. Cambridge: MIT Press; 2006. p.512
|
|
|
18)Sherman SM, Guillery RW. Functional connections of cortical areas: A new view from the thalamus. Cambridge MIT Press; 2013
|
|
|
19)Groenewegen HJ, Witter MP. Thalamus. In: Paxinos G, editor. The rat nervous system. 3rd ed. San Diego: Elsevier Academic Press; 2004. p. 407-53
|
|
|
20)Bodor ÁL, Giber K, Rovó Z, et al. Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathway. J Neurosci. 2008; 28: 3090-102
|
|
|
21)DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990; 13: 281-5
|
|
|
22)Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990; 13: 266-71
|
|
|
23)McFarland NR, Haber SN. Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci. 2002; 22: 8117-32
|
|
|
24)Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007; 27: 10659-73
|
|
|
25)Herkenham M. The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J Comp Neurol. 1979; 183: 487-517
|
|
|
26)Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, et al. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex. 2009; 19: 2380-95
|
|
|
27)Kaneko T. Local connections of excitatory neurons in motor-associated cortical areas of the rat. Front Neural Circuits. 2013; 7: 75
|
|
|
28)Thach WT. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968; 31: 785-97
|
|
|
29)Rowland NC, Jaeger D. Coding of tactile response properties in the rat deep cerebellar nuclei. J Neurophysiol. 2005; 94: 1236-51
|
|
|
30)Blenkinsop TA, Lang EJ. Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity. J Neurosci. 2011; 31: 14708-20
|
|
|
31)DeLong MR. Activity of pallidal neurons during movement. J Neurophysiol. 1971; 34: 414-27
|
|
|
32)DeLong MR, Crutcher MD, Georgopoulos AP. Relations between movement and single cell discharge in the substantia nigra of the behaving monkey. J Neurosci. 1983; 3: 1599-606
|
|
|
33)Chiken S, Tokuno H. Ablation of striatal interneurons influences activities of entopeduncular neurons. Neuroreport. 2003; 14: 675-8
|
|
|
34)Magill PJ, Sharott A, Bolam JP, et al. Brain state-dependency of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat. J Neurophysiol. 2004; 92: 2122-36
|
|
|
35)Baron MS, Chaniary KD, Rice AC, et al. Multi-neuronal recordings in the basal ganglia in normal and dystonic rats. Front Syst Neurosci. 2011; 5: 67
|
|
|
36)Anderson ME, Turner RS. Activity of neurons in cerebellar-receiving and pallidal-receiving areas of the thalamus of the behaving monkey. J Neurophysiol. 1991; 66: 879-93
|
|
|
37)Vitek JL, Ashe J, DeLong MR, et al. Physiologic properties and somatotopic organization of the primate motor thalamus. J Neurophysiol. 1994; 71: 1498-513
|
|
|
38)Steriade M, Nuñez A, Amzica F. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993; 13: 3252-65
|
|
|
39)Walters JR, Hu D, Itoga CA, et al. Phase relationships support a role for coordinated activity in the indirect pathway in organizing slow oscillations in basal ganglia output after loss of dopamine. Neuroscience. 2007; 144: 762-76
|
|
|
40)Nambu A, Yoshida S, Jinnai K. Movement-related activity of thalamic neurons with input from the globus pallidus and projection to the motor cortex in the monkey. Exp Brain Res. 1991; 84: 279-84
|
|
|
41)Tanaka M. Inactivation of the central thalamus delays self-timed saccades. Nat Neurosci. 2006; 9: 20-2
|
|
|
42)Tanaka M. Cognitive signals in the primate motor thalamus predict saccade timing. J Neurosci. 2007; 27: 12109-18
|
|
|
43)Deniau JM, Chevalier G. Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res. 1985; 334: 227-33
|
|
|
44)Di Chiara G, Morelli M, Porceddu ML, et al. Role of thalamic gamma-aminobutyrate in motor functions: catalepsy and ipsiversive turning after intrathalamic muscimol. Neuroscience. 1979; 4: 1453-65
|
|
|
45)Starr MS, Summerhayes M. Role of the ventromedial nucleus of the thalamus in motor behaviour--I. Effects of focal injections of drugs. Neuroscience. 1983; 10: 1157-69
|
|
|
46)Filion M, Tremblay L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 1991; 547: 142-51
|
|
|
47)Burbaud P, Gross C, Benazzouz A, et al. Reduction of apomorphine-induced rotational behaviour by subthalamic lesion in 6-OHDA lesioned rats is associated with a normalization of firing rate and discharge pattern of pars reticulata neurons. Exp Brain Res. 1995; 105: 48-58
|
|
|
48)Breit S, Martin A, Lessmann L, et al. Bilateral changes in neuronal activity of the basal ganglia in the unilateral 6-hydroxydopamine rat model. J Neurosci Res. 2008; 86: 1388-96
|
|
|
49)Starr PA, Kang GA, Heath S, et al. Pallidal neuronal discharge in Huntingtonʼs disease: support for selective loss of striatal cells originating the indirect pathway. Exp Neurol. 2008; 211: 227-33
|
|
|
50)Wang Y, Zhang QJ, Liu J, et al. Changes in firing rate and pattern of GABAergic neurons in subregions of the substantia nigra pars reticulata in rat models of Parkinsonʼs disease. Brain Res. 2010; 1324: 54-63
|
|
|
51)Wang Y, Zhang QJ, Liu J, et al. Noradrenergic lesion of the locus coeruleus increases apomorphine-induced circling behavior and the firing activity of substantia nigra pars reticulata neurons in a rat model of Parkinsonʼs disease. Brain Res. 2010; 1310: 189-99
|
|
|
52)Molnar GF, Pilliar A, Lozano AM, et al. Differences in neuronal firing rates in pallidal and cerebellar receiving areas of thalamus in patients with Parkinsonʼs disease, essential tremor, and pain. J Neurophysiol. 2005; 93: 3094-101
|
|
|
53)Schneider JS, Rothblat DS. Alterations in intralaminar and motor thalamic physiology following nigrostriatal dopamine depletion. Brain Res. 1996; 742: 25-33
|
|
|
54)Raz A, Vaadia E, Bergman H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci. 2000; 20: 8559-71
|
|
|
55)Wichmann T, Bergman H, Starr PA, et al. Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp Brain Res. 1999; 125: 397-409
|
|
|
56)Rivlin-Etzion M, Marmor O, Saban G, et al. Low-pass filter properties of basal ganglia cortical muscle loops in the normal and MPTP primate model of parkinsonism. J Neurosci. 2008; 28: 633-49
|
|
|
57)Kaneda K, Tachibana Y, Imanishi M, et al. Down-regulation of metabotropic glutamate receptor 1alpha in globus pallidus and substantia nigra of parkinsonian monkeys. Eur J Neurosci. 2005; 22: 3241-54
|
|
|
58)Rohlfs A, Nikkhah G, Rosenthal C, et al. Hemispheric asymmetries in spontaneous firing characteristics of substantia nigra pars reticulata neurons following a unilateral 6-hydroxydopamine lesion of the rat nigrostriatal pathway. Brain Res. 1997; 761: 352-6
|
|
|
59)Tseng KY, Kasanetz F, Kargieman L, et al. Subthalamic nucleus lesions reduce low frequency oscillatory firing of substantia nigra pars reticulata neurons in a rat model of Parkinsonʼs disease. Brain Res. 2001; 904: 93-103
|
|
|
60)Díaz MR, Barroso-Chinea P, Acevedo A, et al. Effects of dopaminergic cell degeneration on electrophysiological characteristics and GAD65/GAD67 expression in the substantia nigra: different action on GABA cell subpopulations. Mov Disord. 2003; 18: 254-66
|
|
|
61)Ryu SB, Bae EK, Hwang YS, et al. A quantitative comparison of basal ganglia neuronal activities of normal and Parkinsonʼs disease model rats. Neurosci Lett. 2011; 505: 113-8
|
|
|
62)Ruskin DN, Bergstrom DA, Walters JR. Nigrostriatal lesion and dopamine agonists affect firing patterns of rodent entopeduncular nucleus neurons. J Neurophysiol. 2002; 88: 487-96
|
|
|
63)Seeger-Armbruster S, von Ameln-Mayerhofer A. Short- and long-term unilateral 6-hydroxydopamine lesions in rats show different changes in characteristics of spontaneous firing of substantia nigra pars reticulata neurons. Exp Brain Res. 2013; 224: 15-24
|
|
|
64)MacLeod NK, Ryman A, Arbuthnott GW. Electrophysiological properties of nigrothalamic neurons after 6-hydroxydopamine lesions in the rat. Neuroscience. 1990; 38: 447-56
|
|
|
65)Pessiglione M, Guehl D, Rolland A-S, et al. Thalamic neuronal activity in dopamine-depleted primates: evidence for a loss of functional segregation within basal ganglia circuits. J Neurosci. 2005; 25: 1523-31
|
|
|
66)Tachibana Y, Iwamuro H, Kita H, et al. Subthalamo-pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia. Eur J Neurosci. 2011; 34: 1470-84
|
|
|
67)Luo M, Perkel DJ. A GABAergic, strongly inhibitory projection to a thalamic nucleus in the zebra finch song system. J Neurosci. 1999; 19: 6700-11
|
|
|
68)Leblois A, Bodor AL, Person AL, et al. Millisecond timescale disinhibition mediates fast information transmission through an avian basal ganglia loop. J Neurosci. 2009; 29: 15420-33
|
|
|
69)Inase M, Buford JA, Anderson ME. Changes in the control of arm position, movement, and thalamic discharge during local inactivation in the globus pallidus of the monkey. J Neurophysiol. 1996; 75: 1087-104
|
|
|
70)Desmurget M, Turner RS. Motor sequences and the basal ganglia: kinematics, not habits. J Neurosci. 2010; 30: 7685-90
|
|
|
71)Kakei S, Na J, Shinoda Y. Thalamic terminal morphology and distribution of single corticothalamic axons originating from layers 5 and 6 of the cat motor cortex. J Comp Neurol. 2001; 437: 170-85
|
|
|
72)Kultas-Ilinsky K, Sivan-Loukianova E, Ilinsky IA. Reevaluation of the primary motor cortex connections with the thalamus in primates. J Comp Neurol. 2003; 457: 133-58
|
|
|
73)Rouiller EM, Wannier T, Morel A. The dual pattern of corticothalamic projection of the premotor cortex in macaque monkeys. Thalamus & Related Systems. 2003; 2: 189-97
|
|
|