1)Cologan V, Schabus M, Ledoux D, et al. Sleep in disorders of consciousness. Sleep Med Rev. 2010; 14: 97-105
|
|
|
2)宮内 哲.脳を測る―改訂 ヒトの脳機能の非侵襲的測定―.心理学評論.2013; 56: 414-54
|
|
|
3)Duyn JH. EEG-fMRI methods for the study of brain networks during sleep. Front Neurol. 2012; 3: 100
|
|
|
4)寒 重之,小池耕彦,三﨑将也,他.自発性K複合に伴うfMRI信号変化と心拍変動との関係―EEG/fMRI同時計測を用いた検討―.臨床神経生理学.2009; 37: 423-31
|
|
|
5)De Gennaro L, Ferrara M, Bertini M, et al. The spontaneous K-complex during stage 2 sleep: is it the ʻforerunnerʼ of delta waves? Neurosci Lett. 2000; 291: 41-3
|
|
|
6)Cash SS, Halgren E, Dehghani N, et al. The human K-complex represents an isolated cortical down-state. Science. 2009; 324: 1084-7
|
|
|
7)Steriade M, Amzica F, Nunez A. Cholinergic and noradrenergic modulation of the slow (approximate ly 0.3 Hz) oscillation in neocortical cells. J Neurophysiol. 1993; 70: 1385-400
|
|
|
8)Jahnke K, von Wegner F, Morzelewski A, et al. To wake or not to wake? The two-sided nature of the human K-complex. NeuroImage. 2012; 59: 1631-8
|
|
|
9)Wilson MA, McNaughton BL. Reactivation of hippocampaI ensemble memories during sleep. Science. 1994; 265: 676-8
|
|
|
10)Walker MP, Brakefield T, Hobson JA, et al. Dissociable stages of human memory consolidation and reconsolidation. Nature. 2003; 425: 616-20
|
|
|
11)van der Helm E, Gujar N, Nishida M, et al. Sleep-dependent facilitation of episodic memory details. PLoS One. 2011; 6: e27421
|
|
|
12)Rasch B, Büchel C, Gais S, et al. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science. 2007; 315: 1426-9
|
|
|
13)Dang-Vu TT, Schabus M, Desseilles M, et al. Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci U S A. 2008; 105: 15160-5
|
|
|
14)Schabus M, Dang-Vu TT, Albouy G, et al. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2007; 104: 13164-9
|
|
|
15)Andrade KC, Spoormaker VI, Dresler M, et al. Sleep spindles and hippocampal functional connectivity in human NREM sleep. J Neurosci. 2011; 31: 10331-9
|
|
|
16)Wehrle R, Czisch M, Kaufmann C, et al. Rapid eye movement-related brain activation in human sleep: a functional magnetic resonance imaging study. NeuroReport. 2005; 16: 853-7
|
|
|
17)Miyauchi S, Misaki M, Kan S, et al. Human brain activity time-locked to rapid eye movements during REM sleep. Exp Brain Res. 2009; 192: 657-67
|
|
|
18)Hong CC, Harris JC, Pearlson GD, et al. fMRI evidence for multisensory recruitment associated with rapid eye movements during sleep. Hum Brain Mapp. 2009; 30: 1705-22
|
|
|
19)Braun AR, Balkin TJ, Wesenten NJ, et al. Regional cerebral blood flow throughout the sleep-wake cycle An H215o PET study. Brain. 1997; 120: 1173-97
|
|
|
20)Kajimura N, Uchiyama M, Takayama Y, et al. Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. J Neurosci. 1999; 15: 10065-73
|
|
|
21)LaBerge SP, Nagel LE, Dement WC, et al. Lucid dreaming verified by volitional communication during REM sleep. Percept Mot Skills. 1981; 52: 727-32
|
|
|
22)Nitsche MA, Cohen LG, Wassermann EM, et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008; 1: 206-23
|
|
|
23)田中悟志,渡邊克巳.経頭蓋直流電気刺激法: ヒト認知神経科学への応用.神経研究の進歩.2009; 61: 53-64
|
|
|
24)Voss U, Schermelleh-Engel K, Windt J, et al. Measuring consciousness in dreams: the lucidity and consciousness in dreams scale. Conscious Cogn. 2013; 22: 8-21
|
|
|
25)Voss U, Holzmann R, Hobson A, et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci. 2014; 17: 810-2
|
|
|
26)Dresler M, Koch SP, Wehrle R, et al. Dreamed movement elicits activation in the sensorimotor cortex. Curr Biol. 2011; 21: 1833-7
|
|
|
27)Dresler M, Wehrle R, Spoormaker VI, et al. Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/fMRI case study. Sleep. 2012; 35: 1017-20
|
|
|
28)Boly M, Tshibanda L, Vanhaudenhuyse A, et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp. 2009; 30: 2393-3
|
|
|
29)Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008; 322: 876-80
|
|
|
30)Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain. 2010; 133: 161-71
|
|
|
31)Schrouff J, Perlbarg V, Boly M, et al. Brain functional integration decreases during propofol-induced loss of consciousness. NeuroImage. 2011; 57: 198-205
|
|
|
32)Guldenmund P, Demertzi A, Boveroux P, et al. Thalamus, brainstem and salience network connectivity changes during propofol-induced sedation and unconsciousness. Brain Connectivity. 2013; 3: 273-85
|
|
|
33)Gili T, Saxena N, Diukova A, et al. The thalamus and brainstem act as key hubs in alterations of human brain network connectivity induced by mild propofol sedation. J Neurosci. 2013; 33: 4024-31
|
|
|
34)Mhuircheartaigh RN, Rosenorn-Lanng D, Wise R, et al. Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J Neurosci. 2010; 30: 9095-102
|
|
|
35)Picchioni D, Pixa ML, Fukunaga M, et al. Decreased connectivity between the thalamus and the neocortex during human nonrapid eye movement sleep. Sleep. 2014; 37: 387-97
|
|
|
36)Spoormaker VI, Schröter MS, Gleiser PM, et al. Development of a large-scale functional brain network during human non-rapid eye movement sleep. J Neurosci. 2010; 30: 11379-87
|
|
|
37)Boly M, Perlbarg V, Marrelec G, et al. Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc Natl Acad Sci U S A. 2012; 109: 5856-61
|
|
|
38)Uehara T, Yamasaki T, Okamoto T, et al. Efficiency of a “Small-World” brain network depends on consciousness level: A resting-state fMRI study. Cereb Cortex. 2014; 24: 1529-39
|
|
|
39)Koike T, Kan S, Misaki M, et al. Connectivity pattern changes in default-mode network with deep non-REM and REM sleep. Neurosci Res. 2011; 69: 322-30
|
|
|
40)Chow HM, Horovitz SG, Carr WS, et al. Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proc Natl Acad Sci U S A. 2013; 110: 10300-5
|
|
|