1)Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998; 92: 573-85
|
|
|
2)Nambu T, Sakurai T, Mizukami K, et al. Distribution of orexin neurons in the adult rat brain. Brain Res. 1999; 827: 243-60
|
|
|
3)Okumura T, Takakusaki K. Role of orexin in central regulation of gastrointestinal functions. J Gastroenterol. 2008; 43: 652-60
|
|
|
4)Willie JT, Chemelli RM, Sinton CM, et al. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron. 2003; 38: 715-30
|
|
|
5)Nishino S, Okuro M, Kotorii N, et al. Hypocretin/orexin and narcolepsy: basic and clinical insights. Acta Physiol. 2010; 198: 209-22
|
|
|
6)Mahowald MW, Schenck CH. Insights from studying human sleep disorders. Nature. 2005; 437: 1279-85
|
|
|
7)Sakurai T. Orexin deficiency and narcolepsy. Curr Opin Neurobiol. 2013; 23: 760-6
|
|
|
8)Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007; 8: 171-81
|
|
|
9)Peyron C, Tighe DK, van den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998; 18: 9996-10015
|
|
|
10)Koyama Y, Takahashi K, Kodama T, et al. State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking. Neuroscience. 2003; 119: 1209-19
|
|
|
11)Takahashi K, Lin JS, Sakai K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience. 2008; 15: 860-70
|
|
|
12)Cvetkovic-Lopes V, Bayer L, Dorsaz S, et al. Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J Clin Invest. 2010; 120: 713-9
|
|
|
13)Sinnamon HM. Preoptic and hypothalamic neurons and initiation of locomotion in the anesthetized rat. Prog Neurobiol. 1993; 41: 323-44
|
|
|
14)Maquet P, Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res. 2000; 9: 207-31
|
|
|
15)Takakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord. 2013; 28: 1483-91
|
|
|
16)小山純正.モノアミン・コリン作動性システムを中心とした睡眠・覚醒の制御.脳と神経.2012; 64: 601-10
|
|
|
17)Fung SJ, Barnes CD. Membrane excitability changes in hindlimb motoneurons induced by stimulation of the locus coeruleus in cats. Brain Res. 1987; 402: 230-42
|
|
|
18)Takakusaki K, Takahashi K, Saitoh K, et al. Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol. 2005; 568: 1003-20
|
|
|
19)Siegel JM. Hypocretin (orexn): Role in normal behavior and neuropathology. Ann Rev Psychol. 2004; 55: 125-48
|
|
|
20)Habaguchi T, Takakusaki K, Saitoh K, et al. Medullary reticulospinal tract mediating the generalized motor inhibition in cats: II. Functional organization within the medullary reticular formation with respect to postsynaptic inhibition of forelimb and hindlimb motoneurons. Neuroscience. 2002; 113: 65-77
|
|
|
21)Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Muscle tone facilitation and inhibition after orexin-a (hypocretin-1) microinjections into the medial medulla. J Neurophysiol. 2002; 87: 2480-9
|
|
|
22)Takakusaki K, Obara K, Nozu T, et al. Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats. Arch Ital Biol. 2011; 149: 385-405
|
|
|
23)Mileykovskiy BY, Kiyashchenko LI, Kodama T, et al. Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci. 2000; 20: 8551-8
|
|
|
24)Takakusaki K, Kohyama J, Matsuyama K, et al. Synaptic mechanisms acting on lumbar motoneurons during postural augmentation induced by serotonin injection into the rostral pontine reticular formation in decerebrate cats. Exp Brain Res. 1993; 93: 471-82
|
|
|
25)Leonard CS, Llinás R. Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience. 1994; 59: 309-30
|
|
|
26)Drew T, Rossignol S. Functional organization within the medullary reticular formation of intact unanesthetized cat. I. Movements evoked by microstimulation. J Neurophysiol. 1990; 64: 767-81
|
|
|
27)Yan X, Okito K, Yamaguchi T. Effects of superior colliculus ablation on the air-righting reflex in the rat. J Physiol Sci. 2010; 60: 129-36
|
|
|
28)Gao XB, Horvath TL. An arousing discovery on catalepsy: orexin regulates vestibular motor functions. Neuron. 2011; 69: 588-90
|
|
|
29)Jahn K, Deutschländer A, Stephan T, et al. Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage. 2008; 39: 786-92
|
|
|
30)Tsujino N, Tsunematsu T, Uchigashima M, et al. Chronic alterations in monoaminergic cells in the locus coeruleus in orexin neuron-ablated narcoleptic mice. PLoS One. 2013; 8: e70012
|
|
|
31)Edelman G. Neural Darwinism. The Theory of Neuronal Group Selection, New York: Basic Books; 1987
|
|
|