1)Bradley TD, Floras JS. Obstructive sleep apnoea and its cardiovascular consequences. Lancet. 2009; 373: 82-93
|
|
|
2)百村伸一,赤柴恒人,麻野井英次,他.循環器領域における睡眠呼吸障害の診断・治療に関するガイドライン. Circ J. 2012; 74(Suppl. Ⅱ): 963-1051
|
|
|
3)Fletcher EC, Schaaf JW, Miller J, et al. Long-term cardiopulmonary sequelae in patients with sleep apnea and chronic lung disease. Am Rev Respir Dis. 1987; 135: 525-33
|
|
|
4)Laks L, Lehrhaft B, Grunstein RR, et al. Pulmonary hypertension in obstructive sleep apnoea. Eur Respir J. 1995; 8: 537-41
|
|
|
5)Sylvester JT, Shimoda LA, Aaronson PI, et al. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012; 92: 367-520
|
|
|
6)Dematteis M, Godin-Ribuot D, Arnaud C, et al. Cardiovascular consequences of sleep-disordered breathing: contribution of animal models to understanding the human disease. ILAR. 2009; 50: 262-81
|
|
|
7)Zielinski J. Effects of intermittent hypoxia on pulmonary haemodynamics: animal models versus studies in humans. Eur Respir J. 2005; 25: 173-80
|
|
|
8)Fletcher EC. Invited review: Physiological consequences of intermittent hypoxia: syatemic blood pressure. J Appl Physiol. 2001; 90: 1600-5
|
|
|
9)Nagai H, Kuwahira I, Schwenke DO, et al. β2-ad-renergic receptor-dependent attenuation of hypoxic pulmonary vasoconstriction prevents progression of pulmonary arterial hypertension in intermittent hypoxic rats. PLoS One. 2014; 28: e110693
|
|
|
10)Shirai M, Tsuchimoshi H, Nagai H, et al. Pulmonary Vascular tone is dependent on the central modulation of sympathetic nerve activity following chronic intermittent hypoxia. Basic Res Cardiol. 2014; 109: 432
|
|
|
11)Marrone O, Bonsignore MR, Romano S, et al. Slow and fast changes in transmural pulmonary artery pressure in obstructive sleep apnoea. Eur Respir J. 1994; 7: 2192-8
|
|
|
12)Sforza E, Laks L, Grunstein RR, et al. Time course of pulmonary artery pressure during sleep in sleep apnoea syndrome: role of recurrent apnoeas. Eur Respir J. 1998; 11: 440-6
|
|
|
13)Sajkov D, Wang T, Saunders NA, et al. Continuous positive airway pressure treatment improves pulmonary hemodynamics in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2002; 165: 152-8
|
|
|
14)Sajkov D, McEvoy RD. Obstructive sleep apnea and pulmonary hypertension. Prog Cardiovasc Dis. 2009; 51: 363-70
|
|
|
15)Fletcher EC, Lesske J, Qian W, et al. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension. 1992; 19: 555-61
|
|
|
16)Fletcher EC, Bao G. Effect of episodic eucapnic and hypocapnic hypoxia on systemic blood pressure in hypertension-prone rats. J Appl Physiol. (1985) . 1996; 81: 2088-94
|
|
|
17)McGuire M, Bradford A. Chronic intermittent hypoxia increases haematocrit and causes right ventricular hypertrophy in the rat. Respir Physiol. 1999; 117: 53-8
|
|
|
18)Fagan KA. Selected Contribution: Pulmonary hypertension in mice following intermittent hypoxia. J Appl Physiol. (1985). 2001; 90: 2502-7
|
|
|
19)Campen MJ, Shimoda LA, O’Donnell CP. Acute and chronic cardiovascular effects of intermittent hypoxia in C57BL/6J mice. J Appl Physiol. (1985). 2005; 99: 2028-35
|
|
|
20)Snow JB, Kitzis V, Norton CE, et al. Differential effects of chronic hypoxia and intermittent hypocapnic and eucapnic hypoxia on pulmonary vasoreactivity. J Appl Physiol. (1985). 2008; 104: 110-8
|
|
|
21)Nisbet RE, Graves AS, Kleinhenz DJ, et al. The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. Am J Respir Cell Mol Biol. 2009; 40: 601-9
|
|
|
22)Norton CE, Jernigan NL, Kanagy NL, et al. Intermittent hypoxia augments pulmonary vascular smooth muscle reactivity to NO: regulation by reactive oxygen species. J Appl Physiol. (1985). 2011; 111: 980-8
|
|
|
23)Reinke C, Bevans-Fonti S, Grigoryev DN, et al. Chronic intermittent hypoxia induces lung growth in adult mice. Am J Physiol Lung Cell Mol Physiol. 2011; 300: L266-73
|
|
|
24)Soncul H, Oz E, Kalaycioglu S. Role of ischemic preconditioning on ischemia-reperfusion injury of the lung. Chest. 1999; 115: 1672-7
|
|
|
25)Phillips BG, Narkiewicz K, Pesek CA, et al. Effects of obstructive sleep apnea on endothelin-1 and blood pressure. J Hypertens. 1999; 17: 61-6
|
|
|
26)Kanagy NL, Walker BR, Nelin LD. Role of endothelin in intermittent hypoxia-induced hypertension. Hypertension. 2001; 37(2 Pt 2): 511-5
|
|
|
27)Ip MS, Lam B, Chan LY, et al. Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med. 2000; 162: 2166-71
|
|
|
28)Wang Z, Li AY, Guo QH, et al. Effects of cyclic intermittent hypoxia on ET-1 responsiveness and endothelial dysfunction of pulmonary arteries in rats. PloS One. 2013; 8: e58078
|
|
|
29)Snow JB, Gonzalez Bosc LV, Kanagy NL, et al. Role for PKCbeta in enhanced endothelin-1-induced pulmonary vasoconstrictor reactivity following intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol. 2011; 301: L745-54
|
|
|
30)Suwannakin A, Jaimchariyatam N, Sanguanrungsirikul S, et al. Effect of Bosentan on pulmonary vascular in an animal model of obstructive sleep apnea. Am J Respir Crit Care Med. 2012; 185: A6812
|
|
|
31)Sajkov D, Cowie RJ, Thornton AT, et al. Pulmonary hypertension and hypoxemia in obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 1994; 149(2 Pt 1): 416-22
|
|
|
32)Yuan G, Khan SA, Luo W, et al. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol. 2011; 226: 2925-33
|
|
|
33)Yuan G, Nanduri J, Khan S, et al. Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol. 2008; 217: 674-85
|
|
|
34)Ryan S, Taylor CT, McNicholas WT. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation. 2005; 112: 2660-7
|
|
|
35)Sloop GD. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999; 340: 1928; author reply 9
|
|
|
36)Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res. 2001; 89: 763-71
|
|
|
37)Ohga E, Nagase T, Tomita T, et al. Increased levels of circulating ICAM-1, VCAM-1, and L-selectin in obstructive sleep apnea syndrome. J Appl Physiol (1985). 1999; 87: 10-4
|
|
|
38)Yokoe T, Minoguchi K, Matsuo H, et al. Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation. 2003; 107: 1129-34
|
|
|
39)Vergadi E, Chang MS, Lee C, et al. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation. 2011; 123: 1986-95
|
|
|
40)Sforza E, Krieger J, Weitzenblum E, et al. Long-term effects of treatment with nasal continuous positive airway pressure on daytime lung function and pulmonary hemodynamics in patients with obstructive sleep apnea. Am Rev Respir Dis. 1990; 141(4 Pt 1): 866-70
|
|
|
41)Palasiewicz G, Sliwinski P, Koziej M, et al. Acute effects of CPAP and BiPAP breathing on pulmonary haemodynamics in patients with obstructive sleep apnoea. Monaldi Arch Chest Dis. 1997; 52: 440-3
|
|
|