1)Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006; 14: 316-27
|
|
|
2)Snyder RO, Miao CH, Patijn GA, et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet. 1997; 16: 270-6
|
|
|
3)Monahan PE, Samulski RJ, Tazelaar J, et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther. 1998; 5: 40-9
|
|
|
4)Wang L, Takabe K, Bidlingmaier SM, et al. Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci U S A. 1999; 96: 3906-10
|
|
|
5)Wang L, Nichols TC, Read MS, et al. Sustained expression of therapeutic level of factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver. Mol Ther. 2000; 1: 154-8
|
|
|
6)Ishiwata A, Mimuro J, Mizukami H, et al. Liver-restricted expression of the canine factor VIII gene facilitates prevention of inhibitor formation in factor VIII-deficient mice. J Gene Med. 2009; 11: 1020-9
|
|
|
7)Mimuro J, Mizukami H, Hishikawa S, et al. Minimizing the inhibitory effect of neutralizing antibody for efficient gene expression in the liver with adeno-associated virus 8 vectors. Mol Ther. 2013; 21: 318-23
|
|
|
8)Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011; 365: 2357-65
|
|
|
9)Mimuro J, Mizukami H, Shima M, et al. The prevalence of neutralizing antibodies against adeno-associated virus capsids is reduced in young Japanese individuals. J Med Virol. 2014; 86: 1990-7
|
|
|
10)McIntosh J, Lenting PJ, Rosales C, et al. Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood. 2013; 121: 3335-44
|
|
|
11)Lisowski L, Dane AP, Chu K, et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature. 2014; 506: 382-6
|
|
|
12)Roth DA, Tawa NE, Jr, OʼBrien JM, et al. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med. 2001; 344: 1735-42
|
|
|
13)Rosenberg JB, Foster PA, Kaufman RJ, et al. Intracellular trafficking of factor VIII to von Willebrand factor storage granules. J Clin Invest. 1998; 101: 613-24
|
|
|
14)Everett LA, Cleuren AC, Khoriaty RN, et al. Murine coagulation factor VIII is synthesized in endothelial cells. Blood. 2014; 123: 3697-705
|
|
|
15)Lin Y, Chang L, Solovey A, et al. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A. Blood. 2002; 99: 457-62
|
|
|
16)Matsui H, Shibata M, Brown B, et al. Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained in vivo factor VIII expression from lentivirally engineered endothelial progenitors. Stem Cells. 2007; 25: 2660-9
|
|
|
17)Ozelo MC, Vidal B, Brown C, et al. Omental implantation of BOECs in hemophilia dogs results in circulating FVIII antigen and a complex immune response. Blood. 2014; 123: 4045-53
|
|
|
18)Tatsumi K, Sugimoto M, Lillicrap D, et al. A novel cell-sheet technology that achieves durable factor VIII delivery in a mouse model of hemophilia A. PLoS One. 2013; 8: e83280
|
|
|
19)Xu D, Alipio Z, Fink LM, et al. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci U S A. 2009; 106: 808-13
|
|
|
20)Yakura Y, Ishihara C, Kurosaki H, et al. An induced pluripotent stem cell-mediated and integration-free factor VIII expression system. Biochem Biophys Res Commun. 2013; 431: 336-41
|
|
|
21)Park CY, Kim J, Kweon J, et al. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc Natl Acad Sci U S A. 2014; 111: 9253-8
|
|
|
22)Kashiwakura Y, Ohmori T, Mimuro J, et al. Production of functional coagulation factor VIII from iPSCs using a lentiviral vector. Haemophilia. 2014; 20: e40-4
|
|
|
23)Kashiwakura Y, Ohmori T, Mimuro J, et al. Intra-articular injection of mesenchymal stem cells expressing coagulation factor ameliorates hemophilic arthropathy in factor VIII-deficient mice. J Thromb Haemost. 2012; 10: 1802-13
|
|
|
24)Dhadwar SS, Kiernan J, Wen J, et al. Repeated oral administration of chitosan/DNA nanoparticles delivers functional FVIII with the absence of antibodies in hemophilia A mice. J Thromb Haemost. 2010; 8: 2743-50
|
|
|
25)Matsui H, Fujimoto N, Sasakawa N, et al. Delivery of full-length factor VIII using a piggyBac transposon vector to correct a mouse model of hemophilia A. PLoS One. 2014; 9: e104957
|
|
|
26)Kashiwakura Y, Mimuro J, Onishi A, et al. Porcine model of hemophilia A. PLoS One. 2012; 7: e49450
|
|
|
27)Peters RT, Toby G, Lu Q, et al. Biochemical and functional characterization of a recombinant monomeric factor VIII-Fc fusion protein. J Thromb Haemost. 2013; 11: 132-41
|
|
|
28)Powell JS, Josephson NC, Quon D, et al. Safety and prolonged activity of recombinant factor VIII Fc fusion protein in hemophilia A patients. Blood. 2012; 119: 3031-7
|
|
|
29)Mahlangu J, Powell JS, Ragni MV, et al. Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A. Blood. 2014; 123: 317-25
|
|
|
30)Coyle TE, Reding MT, Lin JC, et al. Phase I study of BAY 94-9027, a PEGylated B-domain-deleted recombinant factor VIII with an extended half-life, in subjects with hemophilia A. J Thromb Haemost. 2014; 12: 488-96
|
|
|
31)Tiede A, Brand B, Fischer R, et al. Enhancing the pharmacokinetic properties of recombinant factor VIII: first-in-human trial of glycoPEGylated recombinant factor VIII in patients with hemophilia A. J Thromb Haemost. 2013; 11: 670-8
|
|
|
32)Zollner S, Raquet E, Claar P, et al. Non-clinical pharmacokinetics and pharmacodynamics of rVIII-SingleChain, a novel recombinant single-chain factor VIII. Thromb Res. 2014; 134: 125-31
|
|
|
33)Negrier C, Knobe K, Tiede A, et al. Enhanced pharmacokinetic properties of a glycoPEGylated recombinant factor IX: a first human dose trial in patients with hemophilia B. Blood. 2011; 118: 2695-701
|
|
|
34)Santagostino E, Negrier C, Klamroth R, et al. Safety and pharmacokinetics of a novel recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in hemophilia B patients. Blood. 2012; 120: 2405-11
|
|
|
35)Peters RT, Low SC, Kamphaus GD, et al. Prolonged activity of factor IX as a monomeric Fc fusion protein. Blood. 2010; 115: 2057-64
|
|
|
36)Powell JS, Pasi KJ, Ragni MV, et al. Phase 3 study of recombinant factor IX Fc fusion protein in hemophilia B. N Engl J Med. 2013; 369: 2313-23
|
|
|
37)Golor G, Bensen-Kennedy D, Haffner S, et al. Safety and pharmacokinetics of a recombinant fusion protein linking coagulation factor VIIa with albumin in healthy volunteers. J Thromb Haemost. 2013; 11: 1977-85
|
|
|
38)Karpf DM, Sorensen BB, Hermit MB, et al. Prolonged half-life of glycoPEGylated rFVIIa variants compared to native rFVIIa. Thromb Res. 2011; 128: 191-5
|
|
|
39)Shirahata A, Fukutake K, Takamatsu J, et al. A Phase II clinical trial of a mixture of plasma-derived factor VIIa and factor X (MC710) in haemophilia patients with inhibitors: haemostatic efficacy, safety and pharmacokinetics/pharmacodynamics. Haemophilia. 2013; 19: 853-60
|
|
|
40)Kitazawa T, Igawa T, Sampei Z, et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat Med. 2012; 18: 1570-4
|
|
|
41)Sampei Z, Igawa T, Soeda T, et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One. 2013; 8: e57479
|
|
|
42)Shima M, Hermans C, de Moerloose P. Novel products for haemostasis. Haemophilia. 2014; 20 Suppl 4: 29-35
|
|
|