1)江角泰治.血小板の放出蛋白質.In: 一瀬白帝,編.図説 血栓・止血・血管学 血栓症制圧のために.東京: 中外医学社; 2005. p.243-7
|
|
|
2)國島伸治.Gray platelet syndromeの原因遺伝子同定.血液フロンティア. 2012; 22: 1112-5
|
|
|
3)Shi Q, Montgomery RR. Platelets as delivery systems for disease treatments. Adv Drug Deliv Rev. 2010; 62: 1196-203
|
|
|
4)Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009; 23: 177-89
|
|
|
5)Veljkovic DK, Cramer EM, Alimardani G, et al. Studies of alpha-granule proteins in cultured human megakaryocytes. Thromb Haemost. 2003; 90: 844-52
|
|
|
6)Italiano JE Jr, Richardson JL, Patel-Hett S, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008; 111: 1227-33
|
|
|
7)Yarovoi HV, Kufrin D, Eslin DE, et al. Factor VIII ectopically expressed in platelets: efficacy in hemophilia A treatment. Blood. 2003; 102: 4006-13
|
|
|
8)King SM, Reed GL. Development of platelet secretory granules. Semin Cell Dev Biol. 2002; 13: 293-302
|
|
|
9)Lages B, Weiss HJ. Secreted dense granule adenine nucleotides promote calcium influx and the maintenance of elevated cytosolic calcium levels in stimulated human platelets. Thromb Haemost. 1999; 81: 286-92
|
|
|
10)Ciferri S, Emiliani C, Guglielmini G, et al. Platelets release their lysosomal content in vivo in humans upon activation. Thromb Haemost. 2000; 83: 157-64
|
|
|
11)Nguyen A, Gemmell CH, Yeo EL, et al. Ethanol inhibits thrombin-induced secretion of the contents of human platelet dense and alpha-granules and lysosomes. Thromb Haemost. 1998; 80: 662-7
|
|
|
12)Masliah-Planchon J, Darnige L, Bellucci S. Molecular determinants of platelet delta storage pool deficiencies: an update. Br J Haematol. 2013; 160: 5-11
|
|
|
13)Huizing M, Anikster Y, Gahl WA. Hermansky-Pudlak syndrome and related disorders of organelle formation. Traffic. 2000; 1: 823-35
|
|
|
14)Nurden AT, Nurden P. The gray platelet syndrome: clinical spectrum of the disease. Blood Rev. 2007; 21: 21-36
|
|
|
15)Raccuglia G. Gray platelet syndrome. A variety of qualitative platelet disorder. Am J Med. 1971; 51: 818-28
|
|
|
16)Shivdasani RA, Fujiwara Y, McDevitt MA, et al. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 1997; 16: 3965-73
|
|
|
17)Nichols KE, Crispino JD, Poncz M, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet. 2000; 24: 266-70
|
|
|
18)Ciovacco WA, Raskind WH, Kacena MA. Human phenotypes associated with GATA-1 mutations. Gene. 2008; 427: 1-6
|
|
|
19)Singleton BK, Roxby DJ, Stirling JW, et al. A novel GATA1 mutation (Stop414Arg) in a family with the rare X-linked blood group Lu(a-b-) phenotype and mild macrothrombocytic thrombocytopenia. Br J Haematol. 2013; 161: 139-42
|
|
|
20)Lo B, Li L, Gissen P, et al. Requirement of VPS33B, a member of the Sec1/Munc18 protein family, in megakaryocyte and platelet alpha-granule biogenesis. Blood. 2005; 106: 4159-66
|
|
|
21)Kim SM, Chang HK, Song JW, et al. Agranular platelets as a cardinal feature of ARC syndrome. J Pediatr Hematol Oncol. 2010; 32: 253-8
|
|
|
22)Gissen P, Johnson CA, Morgan NV, et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat Genet. 2004; 36: 400-4
|
|
|
23)Smith H, Galmes R, Gogolina E, et al. Associations among genotype, clinical phenotype, and intracellular localization of trafficking proteins in ARC syndrome. Hum Mutat. 2012; 33: 1656-64
|
|
|
24)Li LT, Zhao J, Chen R, et al. Two novel VPS33B mutations in a patient with arthrogryposis, renal dysfunction and cholestasis syndrome in mainland China. World J Gastroenterol. 2014; 20: 326-9
|
|
|
25)Seo SH, Hwang SM, Ko JM, et al. Identification of novel mutations in the VPS33B gene involved in arthrogryposis, renal dysfunction, and cholestasis syndrome. Clin Genet. 2014; doi: 10.1111/cge.12442.[Epub ahead of print]
|
|
|
26)Hidaka M, Caruana G, Stanford WL, et al. Gene trapping of two novel genes, Hzf and Hhl, expressed in hematopoietic cells. Mech Dev. 2000; 90: 3-15
|
|
|
27)Kimura Y, Hart A, Hirashima M, et al. Zinc finger protein, Hzf, is required for megakaryocyte development and hemostasis. J Exp Med. 2002; 195: 941-52
|
|
|
28)Bénit L, Cramer EM, Massé JM, et al. Molecular study of the hematopoietic zinc finger gene in three unrelated families with gray platelet syndrome. J Thromb Haemost. 2005; 3: 2077-80
|
|
|
29)Maynard DM, Heijnen HF, Gahl WA, et al. The α-granule proteome: novel proteins in normal and ghost granules in gray platelet syndrome. J Thromb Haemost. 2010; 8: 1786-96
|
|
|
30)Gunay-Aygun M, Zivony-Elboum Y, Gumruk F, et al. Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood. 2010; 116: 4990-5001
|
|
|
31)Fabbro S, Kahr WH, Hinckley J, et al. Homozygosity mapping with SNP arrays confirms 3p21 as a recessive locus for gray platelet syndrome and narrows the interval significantly. Blood. 2011; 117: 3430-4
|
|
|
32)Gunay-Aygun M, Falik-Zaccai TC, Vilboux T, et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet α-granules. Nat Genet. 2011; 43: 732-4
|
|
|
33)Kahr WH, Hinckley J, Li L, et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet. 2011; 43: 738-40
|
|
|
34)Albers CA, Cvejic A, Favier R, et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet. 2011; 43: 735-7
|
|
|
35)Bottega R, Pecci A, De Candia E, et al. Correlation between platelet phenotype and NBEAL2 genotype in patients with congenital thrombocytopenia and α-granule deficiency. Haematologica. 2013; 98: 868-74
|
|
|
36)Kahr WH, Lo RW, Li L, et al. Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice. Blood. 2013; 122: 3349-58
|
|
|
37)Deppermann C, Cherpokova D, Nurden P, et al. Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J Clin Invest. 2013; 123: 3331-42
|
|
|
38)Bottega R, Pecci A, De Candia E, et al. Correlation between platelet phenotype and NBEAL2 genotype in patients with congenital thrombocytopenia and α-granule deficiency. Haematologica. 2013; 98: 868-74
|
|
|
39)Stevenson WS, Morel-Kopp MC, Chen Q, et al. GFI1B mutation causes a bleeding disorder with abnormal platelet function. J Thromb Haemost. 2013; 11: 2039-47
|
|
|
40)Monteferrario D, Bolar NA, Marneth AE, et al. A dominant-negative GFI1B mutation in the gray platelet syndrome. N Engl J Med. 2014; 370: 245-53
|
|
|