医中誌リンクサービス


文献リスト

1)Moore MA. Commentary: The role of cell migration in the ontogeny of the lymphoid system. Stem Cells Dev. 2004; 13: 1-21
PubMed CrossRef
医中誌リンクサービス
2)Malouf C, Ottersbach K. The unconventional embryo: immune-restricted potential precedes multipotentiality. Cell Stem Cell. 2013; 13: 509-10
PubMed CrossRef
医中誌リンクサービス
3)Maximow AA. Relation of blood cells to connective tissues and endothelium. Physiol Rev. 1924; 4: 533-63
医中誌リンクサービス
4)Moore MA, Owen JJ. Chromosome marker studies on the development of the haemopoietic system in the chick embryo. Nature. 1965; 208: 956 passim
PubMed CrossRef
医中誌リンクサービス
5)Moore MA, Owen JJ. Experimental studies on the development of the bursa of Fabricius. Dev Biol. 1966; 14: 40-51
PubMed CrossRef
医中誌リンクサービス
6)Moore MA, Owen JJ. Experimental studies on the development of the thymus. J Exp Med. 1967; 126: 715-26
PubMed CrossRef
医中誌リンクサービス
7)Moore MA, Metcalf D. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol. 1970; 18: 279-96
PubMed CrossRef
医中誌リンクサービス
8)Dieterlen-Lievre F. On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol. 1975; 33: 607-19
PubMed
医中誌リンクサービス
9)Dieterlen-Lievre F. Hemopoietic cell progenitors in the avian embryo: origin and migrations. Ann N Y Acad Sci. 1987; 511: 77-87
PubMed CrossRef
医中誌リンクサービス
10)Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996; 86: 897-906
PubMed CrossRef
医中誌リンクサービス
11)Cumano A, Dieterlen-Lievre F, Godin I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell. 1996; 86: 907-16
PubMed CrossRef
医中誌リンクサービス
12)Cumano A, Ferraz JC, Klaine M, et al. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity. 2001; 15: 477-85
PubMed CrossRef
医中誌リンクサービス
13)Yokota T, Huang J, Tavian M, et al. Tracing the first waves of lymphopoiesis in mice. Development. 2006; 133: 2041-51
医中誌リンクサービス
14)Yokota T, Oritani K, Butz S, et al. The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice. Blood. 2009; 113: 2914-23
PubMed CrossRef
医中誌リンクサービス
15)Tavian M, Coulombel L, Luton D, et al. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood. 1996; 87: 67-72
PubMed
医中誌リンクサービス
16)Tavian M, Hallais MF, Peault B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development. 1999; 126: 793-803
医中誌リンクサービス
17)Tavian M, Robin C, Coulombel L, et al. The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity. 2001; 15: 487-95
PubMed CrossRef
医中誌リンクサービス
18)Yoder MC, Hiatt K, Dutt P, et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity. 1997; 7: 335-44
PubMed CrossRef
医中誌リンクサービス
19)Matsuoka S, Tsuji K, Hisakawa H, et al. Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta-gonad-mesonephros region-derived stromal cells. Blood. 2001; 98: 6-12
PubMed CrossRef
医中誌リンクサービス
20)Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell. 2002; 109: 29-37
PubMed CrossRef
医中誌リンクサービス
21)Lux CT, Yoshimoto M, McGrath K, et al. All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood. 2008; 111: 3435-8
PubMed CrossRef
医中誌リンクサービス
22)Yoshimoto M, Porayette P, Glosson NL, et al. Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood. 2012; 119: 5706-14
PubMed CrossRef
医中誌リンクサービス
23)Samokhvalov IM, Samokhvalova NI, Nishikawa S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature. 2007; 446: 1056-61
PubMed CrossRef
医中誌リンクサービス
24)Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol. 2011; 11: 34-46
PubMed
医中誌リンクサービス
25)Martins VC, Ruggiero E, Schlenner SM, et al. Thymus-autonomous T cell development in the absence of progenitor import. J Exp Med. 2012; 209: 1409-17
PubMed CrossRef
医中誌リンクサービス
26)Peaudecerf L, Lemos S, Galgano A, et al. Thymocytes may persist and differentiate without any input from bone marrow progenitors. J Exp Med. 2012; 209: 1401-8
PubMed CrossRef
医中誌リンクサービス
27)Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol. 2008; 9: 129-36
PubMed CrossRef
医中誌リンクサービス
28)Frame JM, McGrath KE, Palis J. Erythro-myeloid progenitors: “definitive” hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. Blood cells Mol Dis. 2013; 51: 220-5
PubMed CrossRef
医中誌リンクサービス
29)Sugiyama D, Ogawa M, Nakao K, et al. B cell potential can be obtained from pre-circulatory yolk sac, but with low frequency. Dev Biol. 2007; 301: 53-61
PubMed CrossRef
医中誌リンクサービス
30)Yoshimoto M, Montecino-Rodriguez E, Ferkowicz MJ, et al. Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc Natl Acad Sci U S A. 2011; 108: 1468-73
PubMed CrossRef
医中誌リンクサービス
31)Boiers C, Carrelha J, Lutteropp M, et al. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell. 2013; 13: 535-48
PubMed CrossRef
医中誌リンクサービス
32)Katsura Y, Kawamoto H. Stepwise lineage restriction of progenitors in lympho-myelopoiesis. Int Rev Immunol. 2001; 20: 1-20
PubMed CrossRef
医中誌リンクサービス
33)Yokota T, Kouro T, Hirose J, et al. Unique properties of fetal lymphoid progenitors identified according to RAG1 gene expression. Immunity. 2003; 19: 365-75
PubMed CrossRef
医中誌リンクサービス
34)Cumano A, Paige CJ, Iscove NN, et al. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature. 1992; 356: 612-5
PubMed CrossRef
医中誌リンクサービス
35)Matutes E, Morilla R, Farahat N, et al. Definition of acute biphenotypic leukemia. Haematologica. 1997; 82: 64-6
PubMed
医中誌リンクサービス
36)Wada H, Masuda K, Satoh R, et al. Adult T-cell progenitors retain myeloid potential. Nature. 2008; 452: 768-72
PubMed CrossRef
医中誌リンクサービス
37)Kawamoto H, Katsura Y. A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloid-lymphoid dichotomy. Trends Immunol. 2009; 30: 193-200
PubMed CrossRef
医中誌リンクサービス
38)Adolfsson J, Månsson R, Buza-vidas N, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential. Cell. 2005; 121: 295-306
PubMed CrossRef
医中誌リンクサービス
39)Mansson R, Hultquist A, Luc S, et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity. 2007; 26: 407-19
PubMed CrossRef
医中誌リンクサービス
40)Yoshida T, Ng SY, Zuniga-Pflucker JC, et al. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol. 2006; 7: 382-91
PubMed CrossRef
医中誌リンクサービス
41)Inlay MA, Bhattacharya D, Sahoo D, et al. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev. 2009; 23: 2376-81
PubMed CrossRef
医中誌リンクサービス
42)Forsberg EC, Serwold T, Kogan S, et al. New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell. 2006; 126: 415-26
PubMed CrossRef
医中誌リンクサービス
43)Boyer SW, Schroeder AV, Smith-Berdan S, et al. All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem Cell. 2011; 9: 64-73
PubMed CrossRef
医中誌リンクサービス
44)Welner RS, Esplin BL, Garrett KP, et al. Asynchronous RAG-1 expression during B lymphopoiesis. J Immunol. 2009; 183: 7768-77
PubMed CrossRef
医中誌リンクサービス
45)Schlenner SM, Madan V, Busch K, et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity. 2010; 32: 426-36
PubMed CrossRef
医中誌リンクサービス
46)Yamamoto R, Morita Y, Ooehara J, et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 2013; 154: 1112-26
PubMed CrossRef
医中誌リンクサービス
47)Morita Y, Ema H, Nakauchi H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med. 2010; 207: 1173-82
PubMed CrossRef
医中誌リンクサービス
48)Busslinger M. Transcriptional control of early B cell development. Annu Rev Immunol. 2004; 22: 55-79
PubMed CrossRef
医中誌リンクサービス
49)Mandel EM, Grosschedl R. Transcription control of early B cell differentiation. Curr Opin Immunol. 2010; 22: 161-7
PubMed CrossRef
医中誌リンクサービス
50)Dengler HS, Baracho GV, Omori SA, et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol. 2008; 9: 1388-98
PubMed CrossRef
医中誌リンクサービス
51)Amin RH, Schlissel MS. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat Immunol. 2008; 9: 613-22
PubMed CrossRef
医中誌リンクサービス
52)Lin YC, Jhunjhunwala S, Benner C, et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol. 2010; 11: 635-43
PubMed CrossRef
医中誌リンクサービス
53)Seo W, Ikawa T, Kawamoto H, et al. Runx1-Cbfbeta facilitates early B lymphocyte development by regulating expression of Ebf1. J Exp Med. 2012; 209: 1255-62
PubMed CrossRef
医中誌リンクサービス
54)Yokota T, Sudo T, Ishibashi T, et al. Complementary regulation of early B-lymphoid differentiation by genetic and epigenetic mechanisms. Int J Hematol. 2013; 98: 382-9
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
55)Zhang Q, Iida R, Yokota T, et al. Early events in lymphopoiesis: an update. Curr Opin Hematol. 2013; 20: 265-72
PubMed CrossRef
医中誌リンクサービス
56)Okuyama K, Ogata J, Yamakawa N, et al. Small RNA as a regulator of hematopoietic development, immune response in infection and tumorigenesis. Int J Hematol. 2014; 99: 553-60
医学中央雑誌刊行会  CrossRef
医中誌リンクサービス
57)Johanson TM, Skinner JP, Kumar A, et al. The role of microRNAs in lymphopoiesis. Int J Hematol. 2014; 100: 246-53
医学中央雑誌刊行会  CrossRef
医中誌リンクサービス
58)Yoshida T, Ng SY, Georgopoulos K. Awakening lineage potential by Ikaros-mediated transcriptional priming. Curr Opin Immunol. 2010; 22: 154-60
PubMed CrossRef
医中誌リンクサービス
59)Yoshida T, Georgopoulos K. Ikaros fingers on lymphocyte differentiation. Int J Hematol. 2014; 100: 220-9
医学中央雑誌刊行会  CrossRef
医中誌リンクサービス
60)Kim J, Sif S, Jones B, et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity.1999; 10: 345-55
PubMed CrossRef
医中誌リンクサービス
61)Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol. 2002; 2: 162-74
PubMed
医中誌リンクサービス
62)Ng SY, Yoshida T, Zhang J, et al. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity. 2009; 30: 493-507
PubMed CrossRef
医中誌リンクサービス
63)Zhang J, Jackson AF, Naito T, et al. Harnessing of the nucleosome-remodeling-deacetylase complex controls lymphocyte development and prevents leukemogenesis. Nat Immunol. 2012; 13: 86-94
PubMed
医中誌リンクサービス
64)Joshi I, Yoshida T, Jena N, et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat Immunol. 2014; 15: 294-304
PubMed CrossRef
医中誌リンクサービス
65)Schwickert TA, Tagoh H, Gultekin S, et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat Immunol. 2014; 15: 283-93
PubMed CrossRef
医中誌リンクサービス
66)Shimazaki N, Lieber MR. Histone methylation and V(D)J recombination. Int J Hematol. 2014; 100: 230-7
医学中央雑誌刊行会  CrossRef
医中誌リンクサービス
67)Liu Y, Subrahmanyam R, Chakraborty T, et al. A plant homeodomain in RAG-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity. 2007; 27: 561-71
PubMed CrossRef
医中誌リンクサービス
68)Matthews AG, Kuo AJ, Ramon-Maiques S, et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature. 2007; 450: 1106-10
PubMed CrossRef
医中誌リンクサービス
69)Shimazaki N, Tsai AG, Lieber MR. H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations. Mol Cell. 2009; 34: 535-44
PubMed CrossRef
医中誌リンクサービス
70)Su IH, Basavaraj A, Krutchinsky AN, et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol. 2003; 4: 124-31
PubMed CrossRef
医中誌リンクサービス
71)Lin YC, Benner C, Mansson R, et al. Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat Immunol. 2012; 13: 1196-204
PubMed CrossRef
医中誌リンクサービス
72)Lin YC, Murre C. Nuclear location and the control of developmental progression. Curr Opin Genet Dev. 2012; 22: 1-5
PubMed CrossRef
医中誌リンクサービス
73)Schneider R, Grosschedl R. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev. 2007; 21: 3027-43
PubMed CrossRef
医中誌リンクサービス
74)Li G, Ruan X, Auerbach Raymond K, et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell. 2012; 148: 84-98
PubMed CrossRef
医中誌リンクサービス
75)Alvarez JD, Yasui DH, Niida H, et al. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 2000; 14: 521-35
PubMed
医中誌リンクサービス
76)Cai S, Han HJ, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet. 2003; 34: 42-51
PubMed CrossRef
医中誌リンクサービス
77)Yasui D, Miyano M, Cai S, et al. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature. 2002; 419: 641-5
PubMed CrossRef
医中誌リンクサービス
78)Cai S, Lee CC, Kohwi-Shigematsu T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet. 2006; 38: 1278-88
PubMed CrossRef
医中誌リンクサービス
79)Satoh Y, Yokota T, Sudo T, et al. The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. Immunity. 2013; 38: 1105-15
PubMed CrossRef
医中誌リンクサービス
80)Webb CF, Bryant J, Popowski M, et al. The ARID family transcription factor bright is required for both hematopoietic stem cell and B lineage development. Mol Cell Biol. 2011; 31: 1041-53
PubMed CrossRef
医中誌リンクサービス
81)An G, Miner CA, Nixon JC, et al. Loss of Bright/ARID3a function promotes developmental plasticity. Stem Cells. 2010; 28: 1560-7
PubMed CrossRef
医中誌リンクサービス
82)Popowski M, Templeton TD, Lee BK, et al. Bright/Arid3A acts as a barrier to somatic cell reprogramming through direct regulation of Oct4, Sox2, and Nanog. Stem Cell Reports. 2014; 2: 26-35
CrossRef
医中誌リンクサービス
83)Stephan RP, Sanders VM, Witte PL. Stage-specific alterations in murine B lymphopoiesis with age. Int Immunol. 1996; 8: 509-18
PubMed CrossRef
医中誌リンクサービス
84)Miller JP, Allman D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol. 2003; 171: 2326-30
PubMed CrossRef
医中誌リンクサービス
85)Stephan RP, Reilly CR, Witte PL. Impaired ability of bone marrow stromal cells to support B lymphopoiesis with age. Blood. 1998; 91: 75-88
PubMed
医中誌リンクサービス
86)Labrie JE, 3rd, Sah AP, Allman DM, et al. Bone marrow microenvironmental changes underlie reduced RAG-mediated recombination and B cell generation in aged mice. J Exp Med. 2004; 200: 411-23
PubMed CrossRef
医中誌リンクサービス
87)Sudo K, Ema H, Morita Y, et al. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med. 2000; 192: 1273-80
PubMed CrossRef
医中誌リンクサービス
88)Kim M, Moon HB, Spangrude GJ. Major age-related changes of mouse hematopoietic stem/progenitor cells. Ann N Y Acad Sci. 2003; 996: 195-208
PubMed CrossRef
医中誌リンクサービス
89)Rossi DJ, Bryder D, Zahn JM, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A. 2005; 102: 9194-9
PubMed CrossRef
医中誌リンクサービス
90)Rossi DJ, Bryder D, Seita J, et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007; 447: 725-9
PubMed CrossRef
医中誌リンクサービス
91)Rossi MI, Yokota T, Medina KL, et al. B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood. 2003; 101: 576-84
PubMed CrossRef
医中誌リンクサービス
92)Keren Z, Naor S, Nussbaum S, et al. B-cell depletion reactivates B lymphopoiesis in the BM and rejuvenates the B lineage in aging. Blood. 2011; 117: 3104-12
PubMed CrossRef
医中誌リンクサービス
93)Florian Maria C, Dörr K, Niebel A, et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 2012; 10: 520-30
PubMed CrossRef
医中誌リンクサービス
94)Yokota T, Orirani K, Butz S, et al. Markers for hematopoietic stem cells: Histories and recent achievements. Advances in Hematopoietic Stem Cell Research. 2012; Chapter 4: 77-88
医中誌リンクサービス
95)Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997; 91: 661-72
PubMed CrossRef
医中誌リンクサービス
96)Doulatov S, Notta F, Laurenti E, et al. Hematopoiesis: A human perspective. Cell Stem Cell. 2012; 10: 120-36
PubMed CrossRef
医中誌リンクサービス
97)Ichii M, Oritani K, Yokota T, et al. Stromal cell-free conditions favorable for human B lymphopoiesis in culture. J Immunol Methods. 2010; 359: 47-55
PubMed CrossRef
医中誌リンクサービス
98)Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007; 7: 118-30
PubMed
医中誌リンクサービス
99)Galy A, Travis M, Cen D, et al. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity. 1995; 3: 459-73
PubMed CrossRef
医中誌リンクサービス
100)Ichii M, Oritani K, Yokota T, et al. The density of CD10 corresponds to commitment and progression in the human B lymphoid lineage. PLoS One. 2010; 5: e12954
CrossRef
医中誌リンクサービス
101)Doulatov S, Notta F, Eppert K, et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol. 2010; 11: 585-93
PubMed CrossRef
医中誌リンクサービス
102)Igarashi H, Gregory SC, Yokota T, et al. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity. 2002; 17: 117-30
PubMed CrossRef
医中誌リンクサービス
103)Kohn LA, Hao Q-L, Sasidharan R, et al. Lymphoid priming in human bone marrow begins before expression of CD10 with upregulation of L-selectin. Nat Immunol. 2012; 13: 963-71
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp