1)Moore MA. Commentary: The role of cell migration in the ontogeny of the lymphoid system. Stem Cells Dev. 2004; 13: 1-21
|
|
|
2)Malouf C, Ottersbach K. The unconventional embryo: immune-restricted potential precedes multipotentiality. Cell Stem Cell. 2013; 13: 509-10
|
|
|
3)Maximow AA. Relation of blood cells to connective tissues and endothelium. Physiol Rev. 1924; 4: 533-63
|
|
|
4)Moore MA, Owen JJ. Chromosome marker studies on the development of the haemopoietic system in the chick embryo. Nature. 1965; 208: 956 passim
|
|
|
5)Moore MA, Owen JJ. Experimental studies on the development of the bursa of Fabricius. Dev Biol. 1966; 14: 40-51
|
|
|
6)Moore MA, Owen JJ. Experimental studies on the development of the thymus. J Exp Med. 1967; 126: 715-26
|
|
|
7)Moore MA, Metcalf D. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol. 1970; 18: 279-96
|
|
|
8)Dieterlen-Lievre F. On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol. 1975; 33: 607-19
|
|
|
9)Dieterlen-Lievre F. Hemopoietic cell progenitors in the avian embryo: origin and migrations. Ann N Y Acad Sci. 1987; 511: 77-87
|
|
|
10)Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996; 86: 897-906
|
|
|
11)Cumano A, Dieterlen-Lievre F, Godin I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell. 1996; 86: 907-16
|
|
|
12)Cumano A, Ferraz JC, Klaine M, et al. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity. 2001; 15: 477-85
|
|
|
13)Yokota T, Huang J, Tavian M, et al. Tracing the first waves of lymphopoiesis in mice. Development. 2006; 133: 2041-51
|
|
|
14)Yokota T, Oritani K, Butz S, et al. The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice. Blood. 2009; 113: 2914-23
|
|
|
15)Tavian M, Coulombel L, Luton D, et al. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood. 1996; 87: 67-72
|
|
|
16)Tavian M, Hallais MF, Peault B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development. 1999; 126: 793-803
|
|
|
17)Tavian M, Robin C, Coulombel L, et al. The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity. 2001; 15: 487-95
|
|
|
18)Yoder MC, Hiatt K, Dutt P, et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity. 1997; 7: 335-44
|
|
|
19)Matsuoka S, Tsuji K, Hisakawa H, et al. Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta-gonad-mesonephros region-derived stromal cells. Blood. 2001; 98: 6-12
|
|
|
20)Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell. 2002; 109: 29-37
|
|
|
21)Lux CT, Yoshimoto M, McGrath K, et al. All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood. 2008; 111: 3435-8
|
|
|
22)Yoshimoto M, Porayette P, Glosson NL, et al. Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood. 2012; 119: 5706-14
|
|
|
23)Samokhvalov IM, Samokhvalova NI, Nishikawa S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature. 2007; 446: 1056-61
|
|
|
24)Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol. 2011; 11: 34-46
|
|
|
25)Martins VC, Ruggiero E, Schlenner SM, et al. Thymus-autonomous T cell development in the absence of progenitor import. J Exp Med. 2012; 209: 1409-17
|
|
|
26)Peaudecerf L, Lemos S, Galgano A, et al. Thymocytes may persist and differentiate without any input from bone marrow progenitors. J Exp Med. 2012; 209: 1401-8
|
|
|
27)Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol. 2008; 9: 129-36
|
|
|
28)Frame JM, McGrath KE, Palis J. Erythro-myeloid progenitors: “definitive” hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. Blood cells Mol Dis. 2013; 51: 220-5
|
|
|
29)Sugiyama D, Ogawa M, Nakao K, et al. B cell potential can be obtained from pre-circulatory yolk sac, but with low frequency. Dev Biol. 2007; 301: 53-61
|
|
|
30)Yoshimoto M, Montecino-Rodriguez E, Ferkowicz MJ, et al. Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc Natl Acad Sci U S A. 2011; 108: 1468-73
|
|
|
31)Boiers C, Carrelha J, Lutteropp M, et al. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell. 2013; 13: 535-48
|
|
|
32)Katsura Y, Kawamoto H. Stepwise lineage restriction of progenitors in lympho-myelopoiesis. Int Rev Immunol. 2001; 20: 1-20
|
|
|
33)Yokota T, Kouro T, Hirose J, et al. Unique properties of fetal lymphoid progenitors identified according to RAG1 gene expression. Immunity. 2003; 19: 365-75
|
|
|
34)Cumano A, Paige CJ, Iscove NN, et al. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature. 1992; 356: 612-5
|
|
|
35)Matutes E, Morilla R, Farahat N, et al. Definition of acute biphenotypic leukemia. Haematologica. 1997; 82: 64-6
|
|
|
36)Wada H, Masuda K, Satoh R, et al. Adult T-cell progenitors retain myeloid potential. Nature. 2008; 452: 768-72
|
|
|
37)Kawamoto H, Katsura Y. A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloid-lymphoid dichotomy. Trends Immunol. 2009; 30: 193-200
|
|
|
38)Adolfsson J, Månsson R, Buza-vidas N, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential. Cell. 2005; 121: 295-306
|
|
|
39)Mansson R, Hultquist A, Luc S, et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity. 2007; 26: 407-19
|
|
|
40)Yoshida T, Ng SY, Zuniga-Pflucker JC, et al. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol. 2006; 7: 382-91
|
|
|
41)Inlay MA, Bhattacharya D, Sahoo D, et al. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev. 2009; 23: 2376-81
|
|
|
42)Forsberg EC, Serwold T, Kogan S, et al. New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell. 2006; 126: 415-26
|
|
|
43)Boyer SW, Schroeder AV, Smith-Berdan S, et al. All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem Cell. 2011; 9: 64-73
|
|
|
44)Welner RS, Esplin BL, Garrett KP, et al. Asynchronous RAG-1 expression during B lymphopoiesis. J Immunol. 2009; 183: 7768-77
|
|
|
45)Schlenner SM, Madan V, Busch K, et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity. 2010; 32: 426-36
|
|
|
46)Yamamoto R, Morita Y, Ooehara J, et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 2013; 154: 1112-26
|
|
|
47)Morita Y, Ema H, Nakauchi H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med. 2010; 207: 1173-82
|
|
|
48)Busslinger M. Transcriptional control of early B cell development. Annu Rev Immunol. 2004; 22: 55-79
|
|
|
49)Mandel EM, Grosschedl R. Transcription control of early B cell differentiation. Curr Opin Immunol. 2010; 22: 161-7
|
|
|
50)Dengler HS, Baracho GV, Omori SA, et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol. 2008; 9: 1388-98
|
|
|
51)Amin RH, Schlissel MS. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat Immunol. 2008; 9: 613-22
|
|
|
52)Lin YC, Jhunjhunwala S, Benner C, et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol. 2010; 11: 635-43
|
|
|
53)Seo W, Ikawa T, Kawamoto H, et al. Runx1-Cbfbeta facilitates early B lymphocyte development by regulating expression of Ebf1. J Exp Med. 2012; 209: 1255-62
|
|
|
54)Yokota T, Sudo T, Ishibashi T, et al. Complementary regulation of early B-lymphoid differentiation by genetic and epigenetic mechanisms. Int J Hematol. 2013; 98: 382-9
|
|
|
55)Zhang Q, Iida R, Yokota T, et al. Early events in lymphopoiesis: an update. Curr Opin Hematol. 2013; 20: 265-72
|
|
|
56)Okuyama K, Ogata J, Yamakawa N, et al. Small RNA as a regulator of hematopoietic development, immune response in infection and tumorigenesis. Int J Hematol. 2014; 99: 553-60
|
|
|
57)Johanson TM, Skinner JP, Kumar A, et al. The role of microRNAs in lymphopoiesis. Int J Hematol. 2014; 100: 246-53
|
|
|
58)Yoshida T, Ng SY, Georgopoulos K. Awakening lineage potential by Ikaros-mediated transcriptional priming. Curr Opin Immunol. 2010; 22: 154-60
|
|
|
59)Yoshida T, Georgopoulos K. Ikaros fingers on lymphocyte differentiation. Int J Hematol. 2014; 100: 220-9
|
|
|
60)Kim J, Sif S, Jones B, et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity.1999; 10: 345-55
|
|
|
61)Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol. 2002; 2: 162-74
|
|
|
62)Ng SY, Yoshida T, Zhang J, et al. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity. 2009; 30: 493-507
|
|
|
63)Zhang J, Jackson AF, Naito T, et al. Harnessing of the nucleosome-remodeling-deacetylase complex controls lymphocyte development and prevents leukemogenesis. Nat Immunol. 2012; 13: 86-94
|
|
|
64)Joshi I, Yoshida T, Jena N, et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat Immunol. 2014; 15: 294-304
|
|
|
65)Schwickert TA, Tagoh H, Gultekin S, et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat Immunol. 2014; 15: 283-93
|
|
|
66)Shimazaki N, Lieber MR. Histone methylation and V(D)J recombination. Int J Hematol. 2014; 100: 230-7
|
|
|
67)Liu Y, Subrahmanyam R, Chakraborty T, et al. A plant homeodomain in RAG-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity. 2007; 27: 561-71
|
|
|
68)Matthews AG, Kuo AJ, Ramon-Maiques S, et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature. 2007; 450: 1106-10
|
|
|
69)Shimazaki N, Tsai AG, Lieber MR. H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations. Mol Cell. 2009; 34: 535-44
|
|
|
70)Su IH, Basavaraj A, Krutchinsky AN, et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol. 2003; 4: 124-31
|
|
|
71)Lin YC, Benner C, Mansson R, et al. Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat Immunol. 2012; 13: 1196-204
|
|
|
72)Lin YC, Murre C. Nuclear location and the control of developmental progression. Curr Opin Genet Dev. 2012; 22: 1-5
|
|
|
73)Schneider R, Grosschedl R. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev. 2007; 21: 3027-43
|
|
|
74)Li G, Ruan X, Auerbach Raymond K, et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell. 2012; 148: 84-98
|
|
|
75)Alvarez JD, Yasui DH, Niida H, et al. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 2000; 14: 521-35
|
|
|
76)Cai S, Han HJ, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet. 2003; 34: 42-51
|
|
|
77)Yasui D, Miyano M, Cai S, et al. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature. 2002; 419: 641-5
|
|
|
78)Cai S, Lee CC, Kohwi-Shigematsu T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet. 2006; 38: 1278-88
|
|
|
79)Satoh Y, Yokota T, Sudo T, et al. The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. Immunity. 2013; 38: 1105-15
|
|
|
80)Webb CF, Bryant J, Popowski M, et al. The ARID family transcription factor bright is required for both hematopoietic stem cell and B lineage development. Mol Cell Biol. 2011; 31: 1041-53
|
|
|
81)An G, Miner CA, Nixon JC, et al. Loss of Bright/ARID3a function promotes developmental plasticity. Stem Cells. 2010; 28: 1560-7
|
|
|
82)Popowski M, Templeton TD, Lee BK, et al. Bright/Arid3A acts as a barrier to somatic cell reprogramming through direct regulation of Oct4, Sox2, and Nanog. Stem Cell Reports. 2014; 2: 26-35
|
|
|
83)Stephan RP, Sanders VM, Witte PL. Stage-specific alterations in murine B lymphopoiesis with age. Int Immunol. 1996; 8: 509-18
|
|
|
84)Miller JP, Allman D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol. 2003; 171: 2326-30
|
|
|
85)Stephan RP, Reilly CR, Witte PL. Impaired ability of bone marrow stromal cells to support B lymphopoiesis with age. Blood. 1998; 91: 75-88
|
|
|
86)Labrie JE, 3rd, Sah AP, Allman DM, et al. Bone marrow microenvironmental changes underlie reduced RAG-mediated recombination and B cell generation in aged mice. J Exp Med. 2004; 200: 411-23
|
|
|
87)Sudo K, Ema H, Morita Y, et al. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med. 2000; 192: 1273-80
|
|
|
88)Kim M, Moon HB, Spangrude GJ. Major age-related changes of mouse hematopoietic stem/progenitor cells. Ann N Y Acad Sci. 2003; 996: 195-208
|
|
|
89)Rossi DJ, Bryder D, Zahn JM, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A. 2005; 102: 9194-9
|
|
|
90)Rossi DJ, Bryder D, Seita J, et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007; 447: 725-9
|
|
|
91)Rossi MI, Yokota T, Medina KL, et al. B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood. 2003; 101: 576-84
|
|
|
92)Keren Z, Naor S, Nussbaum S, et al. B-cell depletion reactivates B lymphopoiesis in the BM and rejuvenates the B lineage in aging. Blood. 2011; 117: 3104-12
|
|
|
93)Florian Maria C, Dörr K, Niebel A, et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 2012; 10: 520-30
|
|
|
94)Yokota T, Orirani K, Butz S, et al. Markers for hematopoietic stem cells: Histories and recent achievements. Advances in Hematopoietic Stem Cell Research. 2012; Chapter 4: 77-88
|
|
|
95)Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997; 91: 661-72
|
|
|
96)Doulatov S, Notta F, Laurenti E, et al. Hematopoiesis: A human perspective. Cell Stem Cell. 2012; 10: 120-36
|
|
|
97)Ichii M, Oritani K, Yokota T, et al. Stromal cell-free conditions favorable for human B lymphopoiesis in culture. J Immunol Methods. 2010; 359: 47-55
|
|
|
98)Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007; 7: 118-30
|
|
|
99)Galy A, Travis M, Cen D, et al. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity. 1995; 3: 459-73
|
|
|
100)Ichii M, Oritani K, Yokota T, et al. The density of CD10 corresponds to commitment and progression in the human B lymphoid lineage. PLoS One. 2010; 5: e12954
|
|
|
101)Doulatov S, Notta F, Eppert K, et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol. 2010; 11: 585-93
|
|
|
102)Igarashi H, Gregory SC, Yokota T, et al. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity. 2002; 17: 117-30
|
|
|
103)Kohn LA, Hao Q-L, Sasidharan R, et al. Lymphoid priming in human bone marrow begins before expression of CD10 with upregulation of L-selectin. Nat Immunol. 2012; 13: 963-71
|
|
|