1)Shimizu W, Horie M, Ohno S, et al. Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan. J Am Coll Cardiol. 2004; 44: 117-25
|
|
|
2)Shimizu W, Moss AJ, Wilde AA, et al. Genotype-phenotype aspects of type 2 long QT syndrome. J Am Coll Cardiol. 2009; 54: 2052-62
|
|
|
3)Schwartz PJ, Stramba-Badiale M, Crotti L, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009; 120: 1761-7
|
|
|
4)Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (HERA). Heart Rhythm. 2011; 8: 1308-39
|
|
|
5)Yoshinaga M, Kucho Y, Sarantuya J, et al. Genetic characteristics of children and adolescents with long-QT syndrome diagnosed by school-based electrocardiographic screening programs. Circ Arrhythm Electrophysiol. 2014; 7: 107-12
|
|
|
6)Boczek NJ, Best JM, Tester DJ, et al. Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circ Cardiovasc Genet. 2013; 6: 279-89
|
|
|
7)Weeke P, Mosley JD, Hanna D, et al. Exome sequencing implicates an increased burden of rare potassium channel variants in the risk of drug-induced long QT interval syndrome. J Am Coll Cardiol. 2014; 63: 1430-7
|
|
|
8)Bagnall RD, Das KJ, Duflou J, et al. Exome analysis-based molecular autopsy in cases of sudden unexplained death in the young. Heart Rhythm. 2014; 11: 655-62
|
|
|
9)Priest JR, Ceresnak SR, Dewey FE, et al. Molecular diagnosis of long QT syndrome at 10 days of life by rapid whole genome sequencing. Heart Rhythm. 2014; 11: 1707-13
|
|
|
10)Crotti L, Johnson CN, Graf E, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013; 127: 1009-17
|
|
|
11)Ben-Johny M, Yang PS, Niu J, et al. Conservation of Ca2+/Calmodulin regulation across na and Ca2+ channels. Cell. 2014; 157: 1657-70
|
|
|
12)Limpitikul WB, Dick IE, Joshi-Mukherjee R, et al. Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac I-type Ca(2+) currents and promote proarrhythmic behavior in ventricular myocytes. J Mol Cell Cardiol. 2014; 74: 115-24
|
|
|
13)Yin G, Hassan F, Haroun AR, et al. Arrhythmogenic calmodulin mutations disrupt intracellular cardiomyocyte Ca2+ regulation by distinct me-chanisms. J Am Heart Assoc. 2014; 3: e000996
|
|
|
14)Marsman RF, Barc J, Beekman L, et al. A mutation in calm1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. J Am Coll Cardiol. 2014; 63: 259-66
|
|
|
15)Earle N, Yeo Han D, Pilbrow A, et al. Single nucleotide polymorphisms in arrhythmia genes modify the risk of cardiac events and sudden death in long QT syndrome. Heart Rhythm. 2014; 11: 76-82
|
|
|
16)de Villiers CP, van der Merwe L, Crotti L, et al. AKAP9 is a genetic modifier of congenital long-QT syndrome type 1. Circ Cardiovasc Genet. 2014; Aug 2 pii: CIRCGENETICS. 113. 000580. [Epub ahead of print]
|
|
|
17)Olde Nordkamp LR, Ruwald MH, Goldenberg I, et al. Syncope in genotype-negative long QT syndrome family members. Am J Cardiol. 2014; 114: 1223-8
|
|
|
18)Medford BA, Bos JM, Ackerman MJ. Epilepsy misdiagnosed as long QT syndrome: it can go both ways. Congenit Heart Dis. 2014; 9: E135-9
|
|
|
19)Anderson JH, Bos JM, Cascino GD, et al. Prevalence and spectrum of electroencephalogram-identified epileptiform activity among patients with long QT syndrome. Heart Rhythm. 2014; 11: 53-7
|
|
|
20)Vijayakumar R, Silva JN, Desouza KA, et al. Electrophysiologic Substrate in Congenital Long QT Syndrome: Noninvasive Mapping With Electrocardiographic Imaging (ECGI). Circulation. 2014; 130: 1936-43
|
|
|
21)Itzhaki I, Maizels L, Huber I, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011; 471: 225-9
|
|
|
22)Moretti A, Bellin M, Welling A, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010; 363: 1397-409
|
|
|
23)Wang Y, Liang P, Lan F, et al. Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. J Am Coll Cardiol. 2014; 64: 451-9
|
|
|
24)Sadrieh A, Domanski L, Pitt-Francis J, et al. Multiscale cardiac modelling reveals the origins of notched T waves in long QT syndrome type 2. Nat Commun. 2014; 5: 5069
|
|
|
25)Laksman ZW, Gula LJ, Saklani P, et al. Early repolarization is associated with symptoms in patients with type 1 and type 2 long QT syndrome. Heart Rhythm. 2014; 11: 1632-8
|
|
|
26)Abu-Zeitone A, Peterson DR, Polonsky B, et al. Efficacy of different beta-blockers in the treatment of long QT syndrome. J Am Coll Cardiol. 2014; 64: 1352-8
|
|
|
27)Wilde AA, Ackerman MJ. Beta-blockers in the treatment of congenital long QT syndrome: Is one beta-blocker superior to another? J Am Coll Cardiol. 2014; 64: 1359-61
|
|
|
28)Odening KE, Koren G. How do sex hormones modify arrhythmogenesis in long QT syndrome? Sex hormone effects on arrhythmogenic substrate and triggered activity. Heart Rhythm. 2014; 11: 2107-15
|
|
|
29)Seth R, Moss AJ, McNitt S, et al. Long QT syndrome and pregnancy. J Am Coll Cardiol. 2007; 49: 1092-8
|
|
|
30)Abu-Zeitone A, Peterson DR, Polonsky B, et al. Oral contraceptive use and the risk of cardiac events in patients with long QT syndrome. Heart Rhythm. 2014; 11: 1170-5
|
|
|
31)Crotti L, Tester DJ, White WM, et al. Long QT syndrome-associated mutations in intrauterine fetal death. JAMA. 2013; 309: 1473-82
|
|
|
32)Bezzina CR, Barc J, Mizusawa Y, et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nature Genet. 2013; 45: 1044-9
|
|
|
33)Smith JG, Magnani JW, Palmer C, et al. Genome-wide association studies of the PR interval in African Americans. PLoS Genet. 2011; 7: e1001304
|
|
|
34)Chambers JC, Zhao J, Terracciano CM, et al. Genetic variation in SCN10A influences cardiac conduction. Nature Genet. 2010; 42: 149-52
|
|
|
35)Holm H, Gudbjartsson DF, Arnar DO, et al. Several common variants modulate heart rate, PR interval and QRS duration. Nature Genet. 2010; 42: 117-22
|
|
|
36)Pfeufer A, van Noord C, Marciante KD, et al. Genome-wide association study of PR interval. Nature Genet. 2010; 42: 153-9
|
|
|
37)van den Boogaard M, Smemo S, Burnicka-Turek O, et al. A common genetic variant within SCN10A modulates cardiac SCN5A expression. J Clin Invest. 2014; 124: 1844-52
|
|
|
38)Hu D, Barajas-Martinez H, Pfeiffer R, et al. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J Am Coll Cardiol. 2014; 64: 66-79
|
|
|
39)Nademanee K, Veerakul G, Chandanamattha P, et al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circulation. 2011; 123: 1270-9
|
|
|
40)Szel T, Antzelevitch C. Abnormal repolarization as the basis for late potentials and fractionated electrograms recorded from epicardium in experimental models of Brugada syndrome. J Am Coll Cardiol. 2014; 63: 2037-45
|
|
|
41)Aiba T, Shimizu W, Hidaka I, et al. Cellular basis for trigger and maintenance of ventricular fibrillation in the Brugada syndrome model: High-resolution optical mapping study. J Am Coll Cardiol. 2006; 47: 2074-85
|
|
|
42)Cerrone M, Lin X, Zhang M, et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation. 2014; 129: 1092-103
|
|
|
43)Maury P, Audoubert M, Cintas P, et al. Prevalence of type 1 Brugada ECG pattern after administration of class 1C drugs in patients with type 1 myotonic dystrophy: Myotonic dystrophy as a part of the Brugada syndrome. Heart Rhythm. 2014; 11: 1721-7
|
|
|
44)Petitprez S, Zmoos AF, Ogrodnik J, et al. SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circ Res. 2011; 108: 294-304
|
|
|