1)Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008; 214: 199-210
|
|
|
2)Wynn TA, Ramalingam TR. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat Med. 2012; 18: 1028-40
|
|
|
3)Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003; 200: 500-3
|
|
|
4)Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006; 6: 392-401
|
|
|
5)Berk BC, Fujiwara K, Lehoux S. Ecm remodeling in hypertensive heart disease. J Clin Invest. 2007; 117: 568-75
|
|
|
6)Won S, Davies-Venn C, Liu S, et al. Noninvasive imaging of myocardial extracellular matrix for assessment of fibrosis. Curr Opin Cardiol. 2013; 28: 282-9
|
|
|
7)de Haas HJ, Arbustini E, Fuster V, et al. Molecular imaging of the cardiac extracellular matrix. Circ Res. 2014; 114: 903-15
|
|
|
8)Weber KT, Sun Y, Bhattacharya SK, et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol. 2013; 10: 15-26
|
|
|
9)Baum J, Duffy HS. Fibroblasts and myofibroblasts: What are we talking about? J Cardiovasc Pharmacol. 2011; 57: 376-9
|
|
|
10)Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005; 65: 40-51
|
|
|
11)Daskalopoulos EP, Janssen BJ, Blankesteijn WM. Myofibroblasts in the infarct area: Concepts and challenges. Microsc Microanal. 2012; 18: 35-49
|
|
|
12)Petrov VV, Fagard RH, Lijnen PJ. Stimulation of collagen production by transforming growth factor-beta1 during differentiation of cardiac fibroblasts to myofibroblasts. Hypertension. 2002; 39: 258-63
|
|
|
13)Hinz B, Gabbiani G. Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol. 2003; 14: 538-46
|
|
|
14)Meran S, Steadman R. Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol. 2011; 92: 158-67
|
|
|
15)Santiago JJ, Dangerfield AL, Rattan SG et al. Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: Expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn. 2010; 239: 1573-84
|
|
|
16)Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: The renaissance cell. Circ Res. 2009; 105: 1164-76
|
|
|
17)Tarin D, Croft CB. Ultrastructural features of wound healing in mouse skin. J Anat. 1969; 105: 189-90
|
|
|
18)Fries KM, Blieden T, Looney RJ, et al. Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin Immunol Immunopathol. 1994; 72: 283-92
|
|
|
19)Jelaska A, Strehlow D, Korn JH. Fibroblast heterogeneity in physiological conditions and fibrotic disease. Springer Semin Immunopathol. 1999; 21: 385-95
|
|
|
20)Sugimoto H, Mundel TM, Kieran MW, et al. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006; 5: 1640-6
|
|
|
21)Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010; 225: 631-7
|
|
|
22)Lajiness JD, Conway SJ. Origin, development, and differentiation of cardiac fibroblasts. J Mol Cell Cardiol. 2014; 70: 2-8
|
|
|
23)Goldsmith EC, Hoffman A, Morales MO, et al. Organization of fibroblasts in the heart. Dev Dyn. 2004; 230: 787-94
|
|
|
24)Schlessinger J. Direct binding and activation of receptor tyrosine kinases by collagen. Cell. 1997; 91: 869-72
|
|
|
25)Lin SL, Kisseleva T, Brenner DA, et al. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 2008; 173: 1617-27
|
|
|
26)Moore-Morris T, Guimaraes-Camboa N, Banerjee I, et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest. 2014; 124: 2921-34
|
|
|
27)Takeda N, Manabe I, Uchino Y, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010; 120: 254-65
|
|
|
28)Duffield JS, Lupher M, Thannickal VJ, et al. Host responses in tissue repair and fibrosis. Annu Rev Pathol. 2013; 8: 241-76
|
|
|
29)Kramann R, DiRocco DP, Humphreys BD. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease. J Pathol. 2013; 231: 273-89
|
|
|
30)Porter KE, Turner NA. Cardiac fibroblasts: At the heart of myocardial remodeling. Pharmacol Ther. 2009; 123: 255-78
|
|
|
31)Frangogiannis NG, Michael LH, Entman ML. Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (smemb). Cardiovasc Res. 2000; 48: 89-100
|
|
|
32)Norris RA, Borg TK, Butcher JT, et al. Neonatal and adult cardiovascular pathophysiological remodeling and repair: Developmental role of periostin. Ann N Y Acad Sci. 2008; 1123: 30-40
|
|
|
33)Wessels A, Perez-Pomares JM. The epicardium and epicardially derived cells (epdcs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004; 276: 43-57
|
|
|
34)Manner J, Perez-Pomares JM, Macias D, et al. The origin, formation and developmental significance of the epicardium: A review. Cells Tissues Organs. 2001; 169: 89-103
|
|
|
35)Pérez-Pomares JM, Phelps A, Sedmerova M, et al. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: A model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol. 2002; 247: 307-26
|
|
|
36)Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, et al. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998; 82: 1043-52
|
|
|
37)Lie-Venema H, van den Akker NM, Bax NA, et al. Origin, fate, and function of epicardium-derived cells (epdcs) in normal and abnormal cardiac development. Scientific World Journal. 2007; 7: 1777-98
|
|
|
38)Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003; 112: 1776-84
|
|
|
39)Olivey HE, Mundell NA, Austin AF, et al. Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Dev Dyn. 2006; 235: 50-9
|
|
|
40)Acharya A, Baek ST, Huang G, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012; 139: 2139-49
|
|
|
41)Kakkar R, Lee RT. Intramyocardial fibroblast myocyte communication. Circ Res. 2010; 106: 47-57
|
|
|
42)Lie-Venema H, Gittenberger-de Groot AC, van Empel LJ, et al. Ets-1 and Ets-2 transcription factors are essential for normal coronary and myocardial development in chicken embryos. Circ Res. 2003; 92: 749-56
|
|
|
43)Smith CL, Baek ST, Sung CY, et al. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res. 2011; 108: e15-26
|
|
|
44)Shiojima I, Aikawa M, Suzuki J, et al. Embryonic smooth muscle myosin heavy chain SMemb is expressed in pressure-overloaded cardiac fibroblasts. Jpn Heart J. 1999; 40: 803-18
|
|
|
45)Walker GA, Masters KS, Shah DN, et al. Valvular myofibroblast activation by transforming growth factor-beta: Implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res. 2004; 95: 253-60
|
|
|
46)Kovacic JC, Mercader N, Torres M, et al. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: From cardiovascular development to disease. Circulation. 2012; 125: 1795-808
|
|
|
47)Eisenberg LM, Markwald RR. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res. 1995; 77: 1-6
|
|
|
48)Markwald RR, Fitzharris TP, Manasek FJ. Structural development of endocardial cushions. Am J Anat. 1977; 148: 85-119
|
|
|
49)Duan J, Gherghe C, Liu D, et al. Wnt1/betacatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J. 2012; 31: 429-42
|
|
|
50)Russell JL, Goetsch SC, Gaiano NR, et al. A dynamic notch injury response activates epicardium and contributes to fibrosis repair. Circ Res. 2011; 108: 51-9
|
|
|
51)Braitsch CM, Kanisicak O, van Berlo JH, et al. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J Mol Cell Cardiol. 2013; 65: 108-19
|
|
|
52)Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007; 13: 952-61
|
|
|
53)Murdoch CE, Chaubey S, Zeng L, et al. Endothelial nadph oxidase-2 promotes interstitial cardiac fibrosis and diastolic dysfunction through proinflammatory effects and endothelial-mesenchymal transition. J Am Coll Cardiol. 2014; 63: 2734-41
|
|
|
54)Ghosh AK, Nagpal V, Covington JW, et al. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): Differential expression of microRNAs during EndMT. Cell Signal. 2012; 24: 1031-36
|
|
|
55)Kumarswamy R, Volkmann I, Jazbutyte V, et al. Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler Thromb Vasc Biol. 2012; 32: 361-9
|
|
|
56)LeBleu VS, Taduri G, O'Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 2013;19:1047-53
|
|
|
57)Hashimoto N, Phan SH, Imaizumi K, et al. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2010; 43: 161-72
|
|
|
58)Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 2008; 99: 1375-9
|
|
|
59)Maddaluno L, Rudini N, Cuttano R, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013; 498: 492-6
|
|
|
60)Bellini A, Mattoli S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest. 2007; 87: 858-70
|
|
|
61)Mollmann H, Nef HM, Kostin S, et al. Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc Res. 2006; 71: 661-71
|
|
|
62)Haudek SB, Xia Y, Huebener P, et al. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A. 2006; 103: 18284-9
|
|
|
63)van Amerongen MJ, Bou-Gharios G, Popa E, et al. Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol. 2008; 214: 377-86
|
|
|
64)Bucala R, Spiegel LA, Chesney J, et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994; 1: 71-81
|
|
|
65)Peng H, Herzog EL. Fibrocytes: Emerging effector cells in chronic inflammation. Curr Opin Pharmacol. 2012; 12: 491-6
|
|
|
66)Galligan CL, Fish EN. The role of circulating fibrocytes in inflammation and autoimmunity. J Leukoc Biol. 2013; 93: 45-50
|
|
|
67)Pilling D, Fan T, Huang D, et al. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One. 2009; 4: e7475
|
|
|
68)Falkenham A, Sopel M, Rosin N, et al. Early fibroblast progenitor cell migration to the AngIIexposed myocardium is not CXCL12 or CCL2 dependent as previously thought. Am J Pathol. 2013; 183: 459-69
|
|
|
69)Rosin NL, Falkenham A, Sopel MJ, et al. Regulation and role of connective tissue growth factor in AngII-induced myocardial fibrosis. Am J Pathol. 2013; 182: 714-26
|
|
|
70)Williams SM, Golden-Mason L, Ferguson BS, et al. Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J Mol Cell Cardiol. 2014; 67: 112-25
|
|
|
71)Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005; 97: 512-23
|
|
|
72)Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010; 176: 85-97
|
|
|
73)Mederacke I, Hsu CC, Troeger JS, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013; 4: 2823
|
|
|
74)Chen YT, Chang FC, Wu CF, et al. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 2011; 80: 1170-81
|
|
|
75)Lin SL, Chang FC, Schrimpf C, et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am J Pathol. 2011; 178: 911-23
|
|
|
76)Chen CW, Okada M, Proto JD, et al. Human pericytes for ischemic heart repair. Stem Cells. 2013; 31: 305-16
|
|
|