医中誌リンクサービス


文献リスト

1)Kanwar YS, Wada J, Sun L, et al. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood). 2008; 233: 4-11
PubMed CrossRef
医中誌リンクサービス
2)Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001; 88: E14-22
PubMed CrossRef
医中誌リンクサービス
3)Calles-Escandon J, Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev. 2001; 22: 36-52
PubMed CrossRef
医中誌リンクサービス
4)Pahakis MY, Kosky JR, Dull RO, et al. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun. 2007; 355: 228-33
PubMed CrossRef
医中誌リンクサービス
5)Dane MJ, Khairoun M, Lee DH, et al. Association of kidney function with changes in the endothelial surface layer. Clin J Am Soc Nephrol. 2014; 9: 698-704
PubMed CrossRef
医中誌リンクサービス
6)Nieuwdorp M, Mooij HL, Kroon J, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes. 2006; 55: 1127-32
PubMed CrossRef
医中誌リンクサービス
7)Kuwabara A, Satoh M, Tomita N, et al. Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats. Diabetologia. 2010; 53: 2056-65
PubMed CrossRef
医中誌リンクサービス
8)Satoh M, Kobayashi S, Kuwabara A, et al. In vivo visualization of glomerular microcirculation and hyperfiltration in streptozotocin-induced diabetic rats. Microcirculation. 2010; 17: 103-12
PubMed CrossRef
医中誌リンクサービス
9)Friden V, Oveland E, Tenstad O, et al. The glomerular endothelial cell coat is essential for glomerular filtration. Kidney Int. 2011; 79: 1322-30
PubMed CrossRef
医中誌リンクサービス
10)Salmon AH, Ferguson JK, Burford JL, et al. Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol. 2012; 23: 1339-50
PubMed CrossRef
医中誌リンクサービス
11)Salmon AH, Satchell SC. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol. 2012; 226: 562-74
PubMed CrossRef
医中誌リンクサービス
12)Singh A, Ramnath RD, Foster RR, et al. Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One. 2013; 8: e55852
CrossRef
医中誌リンクサービス
13)van den Hoven MJ, Rops AL, Bakker MA, et al. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int. 2006; 70: 2100-8
PubMed
医中誌リンクサービス
14)Wijnhoven TJ, van den Hoven MJ, Ding H, et al. Heparanase induces a differential loss of heparan sulphate domains in overt diabetic nephropathy. Diabetologia. 2008; 51: 372-82
PubMed CrossRef
医中誌リンクサービス
15)van den Hoven MJ, Wijnhoven TJ, Li JP, et al. Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney Int. 2008; 73: 278-87
PubMed CrossRef
医中誌リンクサービス
16)Gil N, Goldberg R, Neuman T, et al. Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes. 2012; 61: 208-16
PubMed CrossRef
医中誌リンクサービス
17)Zatz R, Dunn BR, Meyer TW, et al. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest. 1986; 77: 1925-30
PubMed CrossRef
医中誌リンクサービス
18)Satchell SC, Braet F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol. 2009; 296: F947-56
PubMed
医中誌リンクサービス
19)Jefferson JA, Shankland SJ, Pichler RH. Proteinuria in diabetic kidney disease: a mechanistic viewpoint. Kidney Int. 2008; 74: 22-36
PubMed CrossRef
医中誌リンクサービス
20)Weil EJ, Lemley KV, Mason CC, et al. Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney Int. 2012; 82: 1010-7
PubMed CrossRef
医中誌リンクサービス
21)Toyoda M, Najafian B, Kim Y, et al. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes. 2007; 56: 2155-60
PubMed CrossRef
医中誌リンクサービス
22)Nakagawa T, Sato W, Glushakova O, et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J Am Soc Nephrol. 2007; 18: 539-50
PubMed CrossRef
医中誌リンクサービス
23)Nakayama T, Sato W, Kosugi T, et al. Endothelial injury due to eNOS deficiency accelerates the progression of chronic renal disease in the mouse. Am J Physiol Renal Physiol. 2009; 296: F317-27
PubMed
医中誌リンクサービス
24)Sun YB, Qu X, Zhang X, et al. Glomerular endothelial cell injury and damage precedes that of podocytes in adriamycin-induced nephropathy. PLoS One. 2013; 8: e55027
CrossRef
医中誌リンクサービス
25)Yuen DA, Stead BE, Zhang Y, et al. eNOS deficiency predisposes podocytes to injury in diabetes. J Am Soc Nephrol. 2012; 23: 1810-23
PubMed CrossRef
医中誌リンクサービス
26)Isermann B, Vinnikov IA, Madhusudhan T, et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med. 2007; 13: 1349-58
PubMed CrossRef
医中誌リンクサービス
27)Bock F, Shahzad K, Wang H, et al. Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc. Proc Natl Acad Sci U S A. 2013; 110: 648-53
PubMed CrossRef
医中誌リンクサービス
28)Eremina V, Jefferson JA, Kowalewska J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008; 358: 1129-36
PubMed CrossRef
医中誌リンクサービス
29)Sivaskandarajah GA, Jeansson M, Maezawa Y, et al. Vegfa protects the glomerular microvasculature in diabetes. Diabetes. 2012; 61: 2958-66
PubMed CrossRef
医中誌リンクサービス
30)Daehn I, Casalena G, Zhang T, et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J Clin Invest. 2014; 124: 1608-21
PubMed CrossRef
医中誌リンクサービス
31)de Zeeuw D, Coll B, Andress D, et al. The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephro-pathy. J Am Soc Nephrol. 2014; 25: 1083-93
PubMed CrossRef
医中誌リンクサービス
32)Bohle A, Wehrmann M, Bogenschutz O, et al. The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathol Res Pract. 1991; 187: 251-9
PubMed CrossRef
医中誌リンクサービス
33)Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006; 17: 17-25
PubMed
医中誌リンクサービス
34)Tasnim F, Zink D. Cross talk between primary human renal tubular cells and endothelial cells in cocultures. Am J Physiol Renal Physiol. 2012; 302: F1055-62
PubMed
医中誌リンクサービス
35)Zeisberg EM, Potenta SE, Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008; 19: 2282-7
PubMed CrossRef
医中誌リンクサービス
36)Li J, Qu X, Bertram JF. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol. 2009; 175: 1380-8
PubMed CrossRef
医中誌リンクサービス
37)He J, Xu Y, Koya D, et al. Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clin Exp Nephrol. 2013; 17: 488-97
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
38)Castoldi G, di Gioia CR, Bombardi C, et al. Renal antifibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline in diabetic rats. Am J Nephrol. 2013; 37: 65-73
PubMed CrossRef
医中誌リンクサービス
39)Kanasaki K, Shi S, Kanasaki M, et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes. 2014; 63: 2120-31
PubMed CrossRef
医中誌リンクサービス
40)Hirata K, Shikata K, Matsuda M, et al. Increased expression of selectins in kidneys of patients with diabetic nephropathy. Diabetologia. 1998; 41: 185-92
PubMed CrossRef
医中誌リンクサービス
41)Seron D, Cameron JS, Haskard DO. Expression of VCAM-1 in the normal and diseased kidney. Nephrol Dial Transplant. 1991; 6: 917-22
PubMed CrossRef
医中誌リンクサービス
42)Okada S, Shikata K, Matsuda M, et al. Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes. 2003; 52: 2586-93
PubMed CrossRef
医中誌リンクサービス
43)Cheng H, Wang H, Fan X, et al. Improvement of endothelial nitric oxide synthase activity retards the progression of diabetic nephropathy in db/db mice. Kidney Int. 2012; 82: 1176-83
PubMed CrossRef
医中誌リンクサービス
44)Satoh M, Fujimoto S, Haruna Y, et al. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am J Physiol Renal Physiol. 2005; 288: F1144-52
PubMed
医中誌リンクサービス
45)Kidokoro K, Satoh M, Channon KM, et al. Maintenance of endothelial guanosine triphosphate cyclohydrolase I ameliorates diabetic nephropathy. J Am Soc Nephrol. 2013; 24: 1139-50
PubMed CrossRef
医中誌リンクサービス
46)Li H, Forstermann U. Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr Opin Pharmacol. 2013; 13: 161-7
PubMed CrossRef
医中誌リンクサービス
47)Morris SM, Jr., Gao T, Cooper TK, et al. Arginase-2 mediates diabetic renal injury. Diabetes. 2011; 60: 3015-22
PubMed CrossRef
医中誌リンクサービス
48)You H, Gao T, Cooper TK, et al. Arginase inhibition mediates renal tissue protection in diabetic nephropathy by a nitric oxide synthase 3-dependent mechanism. Kidney Int. 2013; 84: 1189-97
PubMed CrossRef
医中誌リンクサービス
49)Ogawa S, Nakayama K, Nakayama M, et al. Methylglyoxal is a predictor in type 2 diabetic patients of intima-media thickening and elevation of blood pressure. Hypertension. 2010; 56: 471-6
PubMed CrossRef
医中誌リンクサービス
50)Giacco F, Du X, D’Agati VD, et al. Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice. Diabetes. 2014; 63: 291-9
PubMed CrossRef
医中誌リンクサービス
51)Brouwers O, Niessen PM, Miyata T, et al. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes. Diabetologia. 2014; 57: 224-35
PubMed CrossRef
医中誌リンクサービス
52)Jo-Watanabe A, Ohse T, Nishimatsu H, et al. Glyoxalase I reduces glycative and oxidative stress and prevents age-related endothelial dysfunction through modulation of endothelial nitric oxide synthase phosphorylation. Aging Cell. 2014; 13: 519-28
CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp