医中誌リンクサービス


文献リスト

1)Nagata M, Kriz W. Glomerular damage after uninephrectomy in young rats. II. Mechanical stress on podocytes as a pathway to sclerosis. Kidney Int. 1992; 42: 148-60
PubMed CrossRef
医中誌リンクサービス
2)Barisoni L, Kriz W, Mundel P, et al. The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 1999; 10: 51-61
PubMed
医中誌リンクサービス
3)Nagata M, Horita S, Shu Y, et al. Phenotypic characteristics and cyclin-dependent kinase inhibitors repression in hyperplastic epithelial pathology in idiopathic focal segmental glomerulosclerosis. Lab Invest. 2000; 80: 869-80
PubMed CrossRef
医中誌リンクサービス
4)Nagata M, Hattori M, Hamano Y, et al. Origin and phenotypic features of hyperplastic epithelial cells in collapsing glomerulopathy. Am J Kidney Dis. 1998; 32: 962-9
PubMed CrossRef
医中誌リンクサービス
5)Suzuki T, Matsusaka T, Nakayama M, et al. Genetic podocyte lineage reveals progressive podocytopenia with parietal cell hyperplasia in a murine model of cellular/collapsing focal segmental glomerulosclerosis. Am J Pathol. 2009; 174: 1675-82
PubMed CrossRef
医中誌リンクサービス
6)Smeets B, Kuppe C, Sicking EM, et al. Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J Am Soc Nephrol. 2011; 22: 1262-74
PubMed CrossRef
医中誌リンクサービス
7)Appel D, Kershaw DB, Smeets B, et al. Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol. 2009; 20: 333-43
PubMed CrossRef
医中誌リンクサービス
8)Ronconi E, Sagrinati C, Angelotti ML, et al. Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol. 2009; 20: 322-32
PubMed CrossRef
医中誌リンクサービス
9)Schulte K, Berger K, Boor P, et al. Origin of parietal podocytes in atubular glomeruli mapped by lineage tracing. J Am Soc Nephrol. 2014; 25: 129-41
PubMed CrossRef
医中誌リンクサービス
10)Berger K, Schulte K, Boor P, et al. The regenerative potential of parietal epithelial cells in adult mice. J Am Soc Nephrol. 2014; 25: 693-705
PubMed CrossRef
医中誌リンクサービス
11)Wanner N, Hartleben B, Herbach N, et al. Unraveling the role of podocyte turnover in glomerular aging and injury. J Am Soc Nephrol. 2014; 25: 707–16
医中誌リンクサービス
12)Niranjan T, Bielesz B, Gruenwald A, et al. Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med. 2008; 14: 290-8
PubMed CrossRef
医中誌リンクサービス
13)Lasagni L, Ballerini L, Angelotti ML, et al. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells. 2010; 28: 1674-85
PubMed CrossRef
医中誌リンクサービス
14)Tanaka E, Asanuma K, Kim E, et al. Notch2 activation ameliorates nephrosis. Nat Commun. 2014; 5: 3296
医中誌リンクサービス
15)Ueno T, Kobayashi N, Nakayama M, et al. Aberrant Notch1-dependent effects on glomerular parietal epithelial cells promotes collapsing focal segmental glomerulosclerosis with progressive podocyte loss. Kidney Int. 2013; 83: 1065-75
PubMed CrossRef
医中誌リンクサービス
16)Gebeshuber CA, Kornauth C, Dong L, et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat Med. 2013; 19: 481-7
PubMed CrossRef
医中誌リンクサービス
17)Matsusaka T, Sandgren E, Shintani A, et al. Podocyte injury damages other podocytes. J Am Soc Nephrol. 2011; 22: 1275-85
PubMed CrossRef
医中誌リンクサービス
18)Schiffer M, Bitzer M, Roberts IS, et al. Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest. 2001; 108: 807-16
PubMed CrossRef
医中誌リンクサービス
19)Asanuma K, Akiba-Takagi M, Kodama F, et al. Dendrin location in podocytes is associated with disease progression in animal and human glomerulopathy. Am J Nephrol. 2011; 33: 537-49
PubMed CrossRef
医中誌リンクサービス
20)Yaddanapudi S, Altintas MM, Kistler AD, et al. CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. J Clin Invest. 2011; 121: 3965-80
PubMed CrossRef
医中誌リンクサービス
21)Campbell KN, Wong JS, Gupta R, et al. Yes-associated protein (YAP) promotes cell survival by inhibiting proapoptotic dendrin signaling. J Biol Chem. 2013; 288: 17057-62
PubMed CrossRef
医中誌リンクサービス
22)Kriz W, Shirato I, Nagata M, et al. The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol. 2013; 304: F333-47
PubMed
医中誌リンクサービス
23)Kriz W, Lemley KV. Potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol. 2014; 24: pii: ASN. 2014030278
医中誌リンクサービス
24)Peti-Peterdi J, Sipos A. A high-powered view of the filtration barrier. J Am Soc Nephrol. 2010; 21: 1835-41
PubMed CrossRef
医中誌リンクサービス
25)Pippin JW, Glenn ST, Buitrago S, et al. Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease. Am J Pathol. 2013; 183: 542-57
PubMed CrossRef
医中誌リンクサービス
26)Shkreli M, Sarin KY, Pech MF, et al. Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nat Med. 2011; 18: 111-9
PubMed CrossRef
医中誌リンクサービス
27)Sakamoto K, Ueno T, Kobayashi N, et al. The direction and role of phenotypic transition between podocytes and parietal epithelial cells in focal segmental glomerulosclerosis. Am J Physiol Renal Physiol. 2014; 306: 98-104
医中誌リンクサービス
28)Dijkman H, Smeets B, van der Laak J, et al. The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis. Kidney Int. 2005; 68: 1562-72
PubMed CrossRef
医中誌リンクサービス
29)Smeets B, Uhlig S, Fuss A, et al. Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. J Am Soc Nephrol. 2009; 20: 2604-15
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp