1)Copple IM. The Keap1-Nrf2 cell defence pathway-a promising therapeutic target? Adv Pharmacol. 2012; 63: 43-79
|
|
|
2)Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997; 236: 313-22
|
|
|
3)Zhang DD, Lo SC, Cross JV, et al. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004; 24: 10941-53
|
|
|
4)Itoh K, Wakabayashi N, Yamamoto M, et al. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells. 2003; 8: 379-91
|
|
|
5)Wakabayashi N, Slocum SL, Kensler TW, et al. When NRF2 talks, who’s listening? Antioxid Redox Signal. 2010; 13: 1649-63
|
|
|
6)Herscovitch M, Comb W, Gilmore TD, et al. Intermolecular disulfide bond formation in the NEMO dimer requires Cys54 and Cys347. Biochem Biophys Res Commun. 2008; 367: 103-8
|
|
|
7)Kamata H, Manabe T, Hirata H, et al. Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett. 2002; 519: 231-7
|
|
|
8)Takada Y, Mukhopadhyay A, Aggarwal BB, et al. Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem. 2003; 278: 24233-41
|
|
|
9)Thimmulappa RK, Lee H, Biswal S, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest. 2006; 116: 984-95
|
|
|
10)Mao L, Wang H, Wang X, et al. Disruption of Nrf2 enhances the upregulation of nuclear factor-kappaB activity, tumor necrosis factor-α, and matrix metalloproteinase-9 after spinal cord injury in mice. Mediators Inflamm. 2010; 2010: 238321
|
|
|
11)Lee DF, Kuo HP, Hung MC, et al. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell. 2009; 36: 131-40
|
|
|
12)Rossi A, Kapahi P, Natoli G, et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature. 2000; 403: 103-8
|
|
|
13)Ahmad R, Raina D, Meyer C, et al. Triterpenoid CDDO-Me blocks the NF-kappaB pathway by direct inhibition of IKKbeta on Cys-179. J Biol Chem. 2006; 281: 35764-9
|
|
|
14)Sussan TE, Rangasamy T, Blake DJ, et al. Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci U S A. 2009; 106: 250-5
|
|
|
15)Cho HY, Reddy SP, Yamamoto M, et al. The transcription factor NRF2 protects against pulmonary fibrosis. FASEB J. 2004; 18: 1258-60
|
|
|
16)Rangasamy T, Guo J, Mitzner WA, et al. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med. 2005; 202: 47-59
|
|
|
17)Jiang Y, Bao H, Ge Y, et al. Therapeutic targeting of GSK3β enhances the Nrf2 antioxidant response and confers hepatic cytoprotection in hepatitis C. Gut. 2014 May 8. doi: 10. 1136
|
|
|
18)Silva-Gomes S, Santos AG, Duarte TL, et al. Transcription factor NRF2 protects mice against dietary iron-induced liver injury by preventing hepatocytic cell death. J Hepatol. 2014; 60: 354-61
|
|
|
19)Enomoto A, Itoh K, Yamamoto M, at al. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci. 2001; 59: 169-77
|
|
|
20)Shih AY1, Li P, Murphy TH. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci. 2005; 25: 10321-35
|
|
|
21)Zhao J, Kobori N, Aronowski J, et al. Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett. 2006; 393: 108-12
|
|
|
22)Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012; 367: 1087-97
|
|
|
23)Gold R, Kappos L, Arnold DL, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012; 367: 1098-107
|
|
|
24)Kim HJ, Vaziri ND. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol. 2010; 298: F662-71
|
|
|
25)Kim HJ, Sato T, Vaziri ND, et al. Role of intrarenal angiotensin system activation, oxidative stress, inflammation, and impaired nuclear factor-erythroid-2-related factor 2 activity in the progression of focal glomerulosclerosis. J Pharmacol Exp Ther. 2011; 337: 583-90
|
|
|
26)Aminzadeh MA, Nicholas SB, Vaziri ND, et al. Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo-interstitial nephropathy. Nephrol Dial Transplant. 2013; 28: 2038-45
|
|
|
27)Oh CJ, Kim JY, Choi YK, et al. Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling. PLoS One. 2012; 7: e45870
|
|
|
28)Yang SM, Chan YL, Hua KF, et al. Osthole improves an accelerated focal segmental glomerulosclerosis model in the early stage by activating the Nrf2 antioxidant pathway and subsequently inhibiting NF-κB-mediated COX-2 expression and apoptosis. Free Radic Biol Med. 2014; 73: 260-9
|
|
|
29)Zheng H, Whitman SA, Wu W, et al. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes. 2011; 60: 3055-66
|
|
|
30)Jiang T, Huang Z, Lin Y et al. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes. 2010; 59: 850-60
|
|
|
31)Miyazaki Y, Shimizu A, Matsusaka T, et al. Keap1 inhibition attenuates glomerulosclerosis. Nephrol Dial Transplant. 2014; 29: 783-91
|
|
|
32)Martini S, Nair V, Keller BJ, et al. Integrative biology identifies shared transcriptional networks in CKD. J Am Soc Nephrol. 2014; 25: 2559-72
|
|
|
33)Pergola PE, Raskin P, Toto RD, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011; 365: 327-36
|
|
|
34)Reisman SA, Chertow GM, Hebbar S, et al. Bardoxolone methyl decreases megalin and activates nrf2 in the kidney. J Am Soc Nephrol. 2012; 23: 1663-73
|
|
|
35)Ding Y, Stidham RD, Bumeister R, et al. The synthetic triterpenoid, RTA 405, increases the glomerular filtration rate and reduces angiotensin II-induced contraction of glomerular mesangial cells. Kidney Int. 2013; 83: 845-54
|
|
|
36)de Zeeuw D, Akizawa T, Audhya P, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013; 369: 2492-503
|
|
|
37)Shelton LM, Park BK, Copple IM. Role of Nrf2 in protection against acute kidney injury. Kidney Int. 2013; 84: 1090-5
|
|
|
38)Ruiz S, Pergola PE, Vaziri ND, et al. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 2013; 83: 1029-41
|
|
|