1)Lifton RP, Dluhy RG, Powers M, et al. A chimeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992; 55: 262-5
|
|
|
2)Stowasser M, Gordon RD, Tunny TJ, et al. Familial hyperalodsteronism type II: five families with a new variety of primary aldosteronism. Clin Exp Pharmacol Physiol. 1992; 19: 319-22
|
|
|
3)Lafferty AR, Torpy DJ, Stowasser M, et al. A novel genetic locus for low rennin hypertension: familial hyperaldosteronism type II maps to chromosome 7 (7p22). J Med Genet. 2000; 37: 831-5
|
|
|
4)Geller DS, Zhang J, Wisgerhof MV, et al. A novel form of human Mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab. 2008; 93: 3117-23
|
|
|
5)Choi M, Scholl UI, Yue P, et al. Kt channel mutations in adrenal aldosteroneproducing adenomas and hereditary hypertension. Science. 2011; 331: 768-72
|
|
|
6)Bar-Lev A, Annes JP. Genetics of adrenocortical disease: an update. Curr Opin Endocrinol Diabetes Obes. 2012; 19: 159-67
|
|
|
7)Boulkroun S, Beuschlein F, Rossi GP, et al. Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism. Hypertension. 2012; 59: 592-8
|
|
|
8)Akerstrom T, Crona J, Delgado Verdugo A, et al. Comprehensive re-sequencing of adrenal aldosterone producing lesions reveal three somatic mutations near the KCNJ5 potassium channel selectivity filter. PLoS One. 2012; 7: e41926
|
|
|
9)Azizan EA, Lam BY, Newhouse SJ, et al. Microarray, qPCR, and KCNJ5 Sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa- and zona fasciculata-like tumors. J Clin Endocrinol Metab. 2012; 97: E819-29
|
|
|
10)Monticone S, Hattangady NG, Nishimoto K, et al. Effect of KCNJ5 mutations on gene expression in aldosterone-producing adenomas and adrenocortical cells. J Clin Endocrinol Metab. 2012; 97: E1567-72
|
|
|
11)Taguchi R, Yamada M, Nakajima Y, et al. Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J Clin Endocrinol Metab. 2012; 97: 1311-9
|
|
|
12)Beuschlein F, Boulkroun S, Osswald A, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet. 2013; 45: 440-4
|
|
|
13)Williams TA, Monticone S, Schack VR, et al. Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension. 2013 Sep 30. [Epub ahead of print]
|
|
|
14)Azizan EA, Poulsen H, Tuluc P, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet. 2013; 45: 1055-60
|
|
|
15)Scholl UI, Goh G, Stölting G, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet. 2013; 45: 1050-4
|
|
|
16)Bertherat J, Horvath A, Groussin L, et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5’ monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J Clin Endocrinol Metab. 2009; 94: 2085-91
|
|
|
17)Carney JA, Gordon H, Carpenter PC, et al. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine. 1985; 64: 270-83
|
|
|
18)Libe R, Fratticci A, Coste J, et al. Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors. Clin Cancer Res. 2008; 14: 4016-24
|
|
|
19)Libe R, Horvath A, Vezzosi D, et al. Frequent phosphodiesterase 11A gene (PDE11A) defects in patients with Carney complex (CNC) caused by PRKAR1A mutations: PDE11A may contribute to adrenal and testicular tumors in CNC as a modifier of the phenotype. J Clin Endocrinol Metab. 2011; 96: E208-14
|
|
|
20)Robinson-White A, Meoli E, Stergiopoulos S, et al. PRKAR1A mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex. J Clin Endocrinol Metab. 2006; 91: 2380-8
|
|
|
21)Tomlinson JW, Walker EA, Bujalska IJ, et al. 11 beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004; 25: 831-66
|
|
|
22)White PC, Rogoff D, McMillan DR, et al. Hexose 6-phosphate dehydrogenase (H6PD) and corticosteroid metabolism. Mol Cell Endocrinol. 2007; 265-266: 89-92
|
|
|
23)Lavery GG, Walker EA, Tiganescu A, et al. Steroid biomarkers and genetic studies reveal inactivating mutations in hexose-6-phosphate dehydrogenase in patients with cortisone reductase deficiency. J Clin Endocrinol Metab. 2008; 93: 3827-32
|
|
|
24)Lawson AJ, Walker EA, Lavery GG, et al. Cortisone-reductase deficiency associated with heterozygous mutations in 11beta-hydroxysteroid dehydrogenase type 1. Proc Natl Acad Sci U S A. 2011; 108: 4111-6
|
|
|
25)Berthon A, Sahut-Barnola I, Lambert-Langlais S, et al. Constitutive beta-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Human Molecular Genetics. 2010; 19: 1561-76
|
|
|
26)Gaujoux S, Pinson S, Gimenez-Roqueplo AP, et al. Inactivation of the APC gene is constant in adrenocortical tumours from patients with familial adenomatous polyposis but not frequent in sporadic adrenocortical cancers. Clin Cancer Res. 2010; 16: 5133-41
|
|
|
27)Tadjine M, Lampron A, Ouadi L, et al. Detection of somatic beta-catenin mutations in primary pigmented nodular adrenocortical disease (PPNAD). Clin Endocrinol (Oxf). 2008; 69: 367-73
|
|
|
28)Chapman A, Durand J, Ouadi L, et al. Identification of genetic alterations of AXIN2 gene in adrenocortical tumours. J Clin Endocrinol Metab. 2011; 96: E1477-81
|
|
|
29)Bonnet S, Gaujoux S, Launay P, et al. Wnt/beta-catenin pathway activation in adrenocortical adenomas is frequently due to somatic CTNNB1-activating mutations, which are associated with larger and nonsecreting tumours: a study in cortisol-secreting and -nonsecreting tumours. J Clin Endocrinol Metab. 2011; 96: E419-26
|
|
|
30)Karasek D, Frysak Z, Pacak K. Genetic testing for pheochromocytoma. Curr Hypertens Rep. 2010; 12: 456-64
|
|
|
31)Baysal BE, Ferrell RE, Willett-Brozick JE, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000; 287: 848-51
|
|
|
32)Niemann S, Muller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet. 2000; 26: 268-70
|
|
|
33)Astuti D, Latif F, Dallol A, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet. 2001; 69: 49-54
|
|
|
34)Bayley JP, Kunst HP, Cascon A, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 2010; 11: 366-72
|
|
|
35)Jafri M, Maher ER. The genetics of phaeochromocytoma: using clinical features to guide genetic testing. Eur J Endocrinol. 2012; 166: 151-8
|
|
|