1)Asher RA, Morgenstern DA, Fidler PS, et al. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci. 2000; 20: 2427-38
|
|
|
2)Jones LL, Margolis RU, Tuszynski MH. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol. 2003; 182: 399-411
|
|
|
3)Bradbury EJ, Moon LD, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002; 416: 636-40
|
|
|
4)Ito Z, Sakamoto K, Imagama S, et al. N-acetylglucosamine 6-O-sulfotransferase-1-deficient mice show better functional recovery after spinal cord injury. J Neurosci. 2010; 28: 5937-47
|
|
|
5)Imagama S, Sakamoto K, Tauchi R, et al. Keratan sulfate restricts neural plasticity after spinal cord injury. J Neurosci. 2011; 31: 17091-102
|
|
|
6)Lau LW, Keough MB, Haylock-Jacobs S, et al. Chondroitin sulfated proteoglycans in demyelinated lesions impair remyelination. Ann Neurol. 2012; 72: 419-32
|
|
|
7)Yang Z, Suzuki R, Daniels SB, et al. NG2 glial cells provide a favorable substrate for growing axons. J Neurosci. 2006; 26: 3829-39
|
|
|
8)Mikami T, Yasunaga D, Kitagawa H. Contactin-1 is a functional receptor for neuroregulatory chondroitin sulfate-E. J Biol Chem. 2009; 284: 4494-9
|
|
|
9)Zuo J, Neubauer D, Graham J, et al. Regeneration of axons after nerve transection repair is enhanced by degradation of chondroitin sulfate proteoglycan. Exp Neurol. 2002; 176: 221-8
|
|
|
10)Sango K, Oohira A, Ajiki K, et al. Phosphacan and neurocan are repulsive substrata for adhesion and neurite extension of adult rat dorsal root ganglion neurons in vitro. Exp Neurol. 2003; 182: 1-11
|
|
|
11)Heine W, Conant K, Griffin JW, et al. Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Exp Neurol. 2004; 189: 231-40
|
|
|
12)Rezajooi K, Pavlides M, Winterbottom J, et al. NG2 proteoglycan expression in the peripheral nervous system: upregulation following injury and comparison with CNS lesions. Mol Cell Neurosci. 2004; 25: 572-84
|
|
|
13)English AW. Enhancing axon regeneration in peripheral nerves also increases functionally inappropriate reinnervation of targets. J Comp Neurol. 2005; 490: 427-41
|
|
|
14)Sugiura Y, Furukawa K, Tajima O, et al. Sensory nerve-dominant nerve degeneration and remodeling in the mutant mice lacking complex gangliosides. Neuroscience. 2005; 135: 1167-78
|
|
|
15)Saigoh K, Izumikawa T, Koike T, et al. Chondroitin beta-1, 4-N-acetylgalactosaminyltransferase-1 missense mutations are associated with neuropathies. J Hum Genet. 2011; 56: 143-6
|
|
|
16)Izumikawa T, Saigoh K, Shimizu J, et al. A chondroitin synthase-1 (ChSy-1) missense mutation in a patient with neuropathy impairs the elongation of chondroitin sulfate chains initiated by chondroitin N-acetylgalactosaminyltransferase-1. Biochim Biophys Acta. 2013; 1830: 4806-12
|
|
|
17)Li Y, Laue K, Temtamy S, et al. Temtamy preaxial brachydactyly syndrome is caused by loss-of -function mutations in chondroitin synthase 1, a potential target of BMP signaling. Am J Hum Genet. 2010; 87: 757-67
|
|
|
18)Tian J, Ling L, Shboul M, et al. Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am J Hum Genet. 2010; 87: 768-78
|
|
|
19)Kusunoki S, Kaida K, Ueda M. Antibodies against gangliosides and ganglioside complexes in Guillain-Barré syndrome: New aspects of research. Biochim Biophys Acta. 2008; 1780: 441-4
|
|
|
20)Shiina M, Kusunoki S, Miyazaki T, et al. Variability in immunohistochemistries of IgM M-proteins binding to sulfated glucuronyl paragloboside. J Neuroimmunol. 2001; 116: 206-12
|
|
|
21)Kusunoki S, Aomatsu H, Morise J, et al. Anti-phosphacan antibody in CIDP (abstr). J Neuroimmunol. 2010; 228: 179
|
|
|