1)Wessberg J, Stambaugh CR, Kralik JD, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature. 2000; 408: 361-5
|
|
|
2)Serruya MD, Hatsopoulos NG, Paninski L, et al. Instant neural control of a movement signal. Nature. 2002; 416: 141-2
|
|
|
3)Taylor DM, Tillery SI, Schwartz AB. Direct cortical control of 3D neuroprosthetic devices. Science. 2002; 296: 1829-32
|
|
|
4)Georgopoulos AP, Kalaska JF, Caminiti R, et al. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci. 1982; 2: 1527-37
|
|
|
5)Velliste M, Perel S, Spalding MC, et al. Cortical control of a prosthetic arm for self-feeding. Nature. 2008; 453: 1098-101
|
|
|
6)Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006; 442: 164-71
|
|
|
7)Hochberg LR, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012; 485: 372-5
|
|
|
8)Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013; 381: 557-64
|
|
|
9)Chao ZC, Nagasaka Y, Fujii N. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. Front Neuroengineering. 2010; 3: 3
|
|
|
10)Schalk G, Kubanek J, Miller KJ, et al. Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng. 2007; 4: 264-75
|
|
|
11)Pistohl T, Ball T, Schulze-Bonhage A, et al. Prediction of arm movement trajectories from ECoG-recordings in humans. J Neurosci Methods. 2008; 167: 105-14
|
|
|
12)Schalk G, Miller KJ, Anderson NR, et al. Two-dimensional movement control using electro-corticographic signals in humans. J Neural Eng. 2008; 5: 75-84
|
|
|
13)Miller KJ, Zanos S, Fetz EE, et al. Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans. J Neurosci. 2009; 29: 3132-7
|
|
|
14)Wang W, Degenhart AD, Collinger JL, et al. Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009: 586-9
|
|
|
15)Van Gompel JJ, Stead SM, Giannini C, et al. Phase I trial: safety and feasibility of intracranial electroencephalography using hybrid subdural electrodes containing macro- and microelectrode arrays. Neurosurg Focus. 2008; 25: E23
|
|
|
16)Kellis SS, House PA, Thomson KE, et al. Human neocortical electrical activity recorded on nonpenetrating microwire arrays: applicability for neuroprostheses. Neurosurg Focus. 2009; 27: E9
|
|
|
17)Wang W, Collinger JL, Degenhart AD, et al. An electrocorticographic brain interface in an individual with tetraplegia. PLoS One. 2013; 8: e55344
|
|
|
18)Hosomi K, Saitoh Y, Kishima H, et al. Electrical stimulation of primary motor cortex within the central sulcus for intractable neuropathic pain. Clin Neurophysiol. 2008; 119: 993-1001
|
|
|
19)Yanagisawa T, Hirata M, Saitoh Y, et al. Neural decoding using gyral and intrasulcal electrocorticograms. Neuroimage. 2009; 45: 1099-106
|
|
|
20)Yanagisawa T, Hirata M, Saitoh Y, et al. Real-time control of a prosthetic hand using human electrocorticography signals. J Neurosurg. 2011; 114: 1715-22
|
|
|
21)Yanagisawa T, Hirata M, Saitoh Y, et al. Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann Neurol. 2012; 71: 353-61
|
|
|
22)Yanagisawa T, Yamashita O, Hirata M, et al. Regulation of motor representation by phase-amplitude coupling in the sensorimotor cortex. J Neurosci. 2012; 32: 15467-75
|
|
|
23)Guenther FH, Brumberg JS, Wright EJ, et al. A wireless brain-machine interface for real-time speech synthesis. PLoS One. 2009; 4: e8218
|
|
|
24)Aceros J, Yin M, Borton DA, et al. A 32-channel fully implantable wireless neurosensor for simultaneous recording from two cortical regions. Conf Proc IEEE Eng Med Biol Soc. 2011; 2011: 2300-6
|
|
|
25)Hirata M, Matsushita K, Suzuki T, et al. A fully-implantable wireless system for human brain-machine interfaces using brain surface electrodes: W-HERBS. IEICE Trans Commun. 2011; E94-B: 2448-53
|
|
|
26)Borton DA, Yin M, Aceros J, et al. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J Neural Eng. 2013; 10: 026010
|
|
|
27)Charvet G, Foerster M, Chatalic G, et al. A wireless 64-channel ECoG recording electronic for implantable monitoring and BCI applications: WIMAGINE. Conf Proc IEEE Eng Med Biol Soc. 2012; 2012: 783-6
|
|
|