1)Brown VJ, Desimone R, Mishkin M. Responses of cells in the tail of the caudate nucleus during visual discrimination learning. J Neurophysiol. 1995; 74: 1083-94
|
|
|
2)Caan W, Perrett DI, Rolls ET. Responses of striatal neurons in the behaving monkey. 2. Visual processing in the caudal neostriatum. Brain Res. 1984; 290: 53-65
|
|
|
3)Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6th ed. Amsterdam: Academic Press; 2007
|
|
|
4)Franklin KBJ, Paxinos G. The Mouse Brain in Stereotaxic Coordinates. 3rd ed. New York: Academic Press; 2007
|
|
|
5)Saleem KS, Logothetis NK. A Combined MRI and Histology Atlas of the Rhesus Monkey Brain. New York: Academic Press; 2007
|
|
|
6)Henderson JM. Human gaze control during real-world scene perception. Trends Cogn Sci. 2003; 7: 498-504
|
|
|
7)Land MF. Eye movements and the control of actions in everyday life. Prog Retin Eye Res. 2006; 25: 296-324
|
|
|
8)Sheinberg DL, Logothetis NK. Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision. J Neurosci. 2001; 21: 1340-50
|
|
|
9)Yarbus AL. Eye Movements and Vision. New York: Plenum Press; 1967
|
|
|
10)Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci. 1992; 15: 20-5
|
|
|
11)Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 1983; 6: 414-7
|
|
|
12)Saint-Cyr JA, Ungerleider LG, Desimone R. Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. J Comp Neurol. 1990; 298: 129-56
|
|
|
13)Van Hoesen GW, Yeterian EH, Lavizzo-Mourey R. Widespread corticostriate projections from temporal cortex of the rhesus monkey. J Comp Neurol. 1981; 199: 205-19
|
|
|
14)Webster MJ, Bachevalier J, Ungerleider LG. Transient subcortical connections of inferior temporal areas TE and TEO in infant macaque monkeys. J Comp Neurol. 1995; 352: 213-26
|
|
|
15)Yeterian EH, Van Hoesen GW. Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res. 1978; 139: 43-63
|
|
|
16)Miyashita Y. Inferior temporal cortex: where visual perception meets memory. Annu Rev Neurosci. 1993; 16: 245-63
|
|
|
17)Tanaka K. Inferotemporal cortex and object vision. Annu Rev Neurosci. 1996; 19: 109-39
|
|
|
18)Logothetis NK, Sheinberg DL. Visual object recognition. Annu Rev Neurosci. 1996; 19: 577-621
|
|
|
19)Bishop GA, Chang HT, Kitai ST. Morphological and physiological properties of neostriatal neurons: an intracellular horseradish peroxidase study in the rat. Neuroscience. 1982; 7: 179-91
|
|
|
20)Smith AD, Bolam JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci. 1990; 13: 259-65
|
|
|
21)Plenz D, Kitai ST. Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J Neuroscience. 1998; 18: 266-83
|
|
|
22)Beckstead RM, Frankfurter A. The distribution and some morphological features of substantia nigra neurons that project to the thalamus, superior colliculus and pedunculopontine nucleus in the monkey. Neuroscience. 1982; 7: 2377-88
|
|
|
23)Francois C, Percheron G, Yelnik J. Localization of nigrostriatal, nigrothalamic and nigrotectal neurons in ventricular coordinates in macaques. Neuroscience. 1984; 13: 61-76
|
|
|
24)Miyashita Y, Higuchi S, Sakai K, et al. Generation of fractal patterns for probing the visual memory. Neurosci Res. 1991; 12: 307-11
|
|
|
25)Yamamoto S, Monosov IE, Yasuda M, et al. What and where information in the caudate tail guides saccades to visual objects. J Neuroscience. 2012; 32: 11005-16
|
|
|
26)Yasuda M, Yamamoto S, Hikosaka O. Robust representation of stable object values in the oculomotor Basal Ganglia. J Neuroscience. 2012; 32: 16917-32
|
|
|
27)Boussaoud D, Desimone R, Ungerleider LG. Visual topography of area TEO in the macaque. J Comp Neurol. 1991; 306: 554-75
|
|
|
28)Hikosaka O, Wurtz RH. Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J Neurophysiology. 1983; 49: 1285-301
|
|
|
29)Robinson DA. Eye movements evoked by collicular stimulation in the alert monkey. Vision Res. 1972; 12: 1795-808
|
|
|
30)Bruce CJ, Goldberg ME, Bushnell MC, et al. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol. 1985; 54: 714-34
|
|
|
31)Shibutani H, Sakata H, Hyvarinen J. Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp Brain Res. 1984; 55: 1-8
|
|
|
32)Yamamoto S, Kim HK, Hikosaka O. Reward value-contingent changes of visual responses in the primate caudate tail associated with a visuomotor skill. J Neuroscience. 2013; 33: 11227-38
|
|
|
33)Kim HF, Hikosaka O. Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron. 2013; 79: 1001-10
|
|
|
34)Hikosaka O, Yamamoto S, Yasuda M, et al. Why skill matters. Trends Cogn Sci. 2013; 17: 434-41
|
|
|
35)Nabavizadeh SA, Vossough A. High-resolution 3-T MR imaging of the temporal part of the caudate tail in children. Childs Nerv Syst. 2013. In press
|
|
|