1)Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A. 2001; 98: 676-82
|
|
|
2)Biswal B, Yetkin FZ, Haughton VM, ea al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995; 34: 537-41
|
|
|
3)Vincent JL, Patel GH, Fox MD, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007; 447: 83-6
|
|
|
4)Rilling JK, Barks SK, Parr LA, et al. A comparison of resting-state brain activity in humans and chimpanzees. Proc Natl Acad Sci U S A. 2007; 104: 17146-51
|
|
|
5)Lu H, Zou Q, Gu H, et al. Rat brains also have a default mode network. Proc Natl Acad Sci U S A. 2012; 109: 3979-84
|
|
|
6)de Pasquale F, Della Penna S, Snyder AZ, et al. A cortical core for dynamic integration of functional networks in the resting human brain. Neuron. 2012; 74: 753-64
|
|
|
7)Broyd SJ, Demanuele C, Debener S, et al. Default-mode brain dysfunction in mental disorders: A systematic review. Neurosci Biobehav Rev. 2009; 33: 279-96
|
|
|
8)Whitfield-Gabrieli S, Thermenos HW, Milanovic S, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A. 2009; 106: 1279-84
|
|
|
9)Perrin JS, Merz S, Bennett DM, et al. Electroconvulsive therapy reduces frontal cortical connectivity in severe depressive disorder. Proc Natl Acad Sci U S A. 2012; 109: 5464-8
|
|
|
10)Abbott CC, Lemke NT, Gopal S, et al. Electro-convulsive therapy response in major depressive disorder: A pilot functional network connectivity resting state FMRI investigation. Front Psychiatry. 2013; 4: 10
|
|
|
11)Montague PR, Dolan RJ, Friston KJ, et al. Computational psychiatry. Trends Cogn Sci. 2012; 16: 72-80
|
|
|
12)Lee D. Decision making: From neuroscience to psychiatry. Neuron. 2013; 78: 233-48
|
|
|
13)Raichle ME. The restless brain. Brain Connect. 2011; 1: 3-12
|
|
|
14)Honey CJ, Sporns O, Cammoun L, et al. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A. 2009; 106: 2035-40
|
|
|
15)Greicius MD, Supekar K, Menon V, et al. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex. 2008; 19: 72-8
|
|
|
16)Keller CJ, Bickl S, Entz L, et al. Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proc Natl Acad Sci U S A. 2011; 108: 10308-13
|
|
|
17)Gordon EM, Stollstorff M, Devaney JM, et al. Effect of dopamine transporter genotype on intrinsic functional connectivity depends on cognitive state. Cereb Cortex. 2012; 22: 2182-96
|
|
|
18)Deco G, Jirsa V, McIntosh AR, et al. Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci U S A. 2009; 106: 10302-7
|
|
|
19)Dragoi G, Tonegawa S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature. 2011; 469: 397-401
|
|
|
20)Dosenbach NU, Nardos B, Cohen AL, et al. Prediction of individual brain maturity using fMRI. Science. 2010; 329: 1358-61
|
|
|
21)Power JD, Barnes KA, Snyder AZ, ea al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012; 59: 2142-54
|
|
|
22)Lewis CM, Baldassarre A, Committeri G, et al. Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A. 2009; 106: 17558-63
|
|
|
23)Albert NB, Robertson EM, Miall RC. The resting human brain and motor learning. Curr Biol. 2009; 19: 1023-7
|
|
|
24)Taubert M, Lohmann G, Margulies DS, et al. Long-term effects of motor training on resting-state networks and underlying brain structure. Neuroimage. 2011; 57: 1492-8
|
|
|
25)Fukuda M, Kawato M, Imamizu H. Unconscious operant conditioning of neural activity with real-time fMRI neurofeedback training and its long-term effect on resting state activity. Soci Neurosci Abstr Online. 2011; 723: 706
|
|
|
26)Baldassarre A, Lewis CM, Committeri G, et al. Individual variability in functional connectivity predicts performance of a perceptual task. Proc Natl Acad Sci U S A. 2012; 109: 3516-21
|
|
|
27)Hampson M, Driesen NR, Skudlarski P, et al. Brain connectivity related to working memory performance. J Neurosci. 2006; 26: 13338-43
|
|
|
28)Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007; 27: 2349-56
|
|
|
29)Adelstein JS, Shehzad Z, Mennes M, et al. Personality is reflected in the brainʼs intrinsic functional architecture. PLoS One. 2011; 6: e27633
|
|
|
30)Sporns O, Zwi JD. The small world of the cerebral cortex. Neuroinformatics. 2004; 2: 145-62
|
|
|
31)Dosenbach NUF, Fair DA, Cohen AL, et al. A dual-networks architecture of top-down control. Trends Cogn Sci. 2008; 12: 99-105
|
|
|
32)Shirer WR, Ryali S, Rykhlevskaia E, et al. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex. 2011; 22: 158-65
|
|
|
33)Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neurosci. 2010; 4: 19
|
|
|
34)Anderson JS, Nielsen JA, Froehlich AL, et al. Functional connectivity magnetic resonance imaging classification of autism. Brain. 2011; 134: 3742-54
|
|
|
35)Yu Y, Shen H, Zhang H, et al. Functional connectivity-based signatures of schizophrenia revealed by multiclass pattern analysis of resting-state fMRI from schizophrenic patients and their healthy siblings. Biomed Eng Online. 2013; 12: 10
|
|
|
36)Chen G, Ward BD, Xie C, et al. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology. 2011; 259: 213-21
|
|
|
37)Zeng LL, Shen H, Liu L, et al. Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis. Brain. 2012; 135: 1498-507
|
|
|
38)Yahata N, Morimoto J, Hashimoto R. A machine-learning-based biomarker for autism spectrum disorder using resting-state fMRI. Neuro. 2013. Abstr. Online: P3-2-173
|
|
|
39)Figee M, Luigjes J, Smolders R, et al. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat Neurosci. 2013; 16: 386-7
|
|
|
40)Scheinost D, Stoica T, Saksa J, et al. Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity. Transl Psychiatry. 2013; 3: e250
|
|
|
41)Kawato M. Computational neuroscience approach to biomarkers and treatments for psychiatric diseases. Plenary lecutre in 12th World Congress of Biologcal Psychiatry. 2013; Abstr. Online
|
|
|
42)Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007; 8: 700-11
|
|
|
43)Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011; 106: 1125-65
|
|
|