1)川平 稔,中原啓一,末原雅人,他,沖縄県における筋萎縮性疾患について 厚生省神経疾患研究委託費 筋ジストロフィー症の疫学,臨床および治療に関する研究 昭和58年度研究報告書.1984. p.167-9
|
|
|
2)Takashima H, Nakagawa M, Nakahara K, et al. A new type of hereditary motor and sensory neuro-pathy linked to chromosome 3. Ann Neurol. 1997; 41: 771-80
|
|
|
3)中川正法.Hereditary motor sensory neuropathyの広がり.臨床神経.2009; 49: 950-2
|
|
|
4)Maeda K, Sugiura M, Kato H, et al. Hereditary motor and sensory neuropathy (proximal dominant form, HMSN-P) among Brazilians of Japanese ancestry. Clin Neurol Neurosurg. 2007; 109: 830-2
|
|
|
5)Maeda K, Kaji R, Yasuno K, et al. Refinement of a locus for autosomal dominant hereditary motor and sensory neuropathy with proximal dominancy (HMSN-P) and genetic heterogeneity. J Hum Genet. 2007; 52: 907-14
|
|
|
6)Patroclo CB, Lino AM, Marchiori PE, et al. Autosomal dominant HMSN with proximal involvement: new Brazilian cases. Arq Neuropsiquiatr. 2009; 67: 892-6
|
|
|
7)Fukuda Y, Nakahara Y, Date H, et al. SNP HiTLink: A high-throughput linkage analysis system employing dense SNP data. BMC Bioinformatics. 2009; 10: 121
|
|
|
8)Gudbjartsson DF, Thorvaldsson T, Kong A, et al. Allegro version 2. Nat Genet. 2005; 3: 1015-6
|
|
|
9)Li H and Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25: 1754-60
|
|
|
10)Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25: 2078-9
|
|
|
11)Ishiura H, Sako W, Yoshida M, et al. The TRK-fused gene is mutated in hereditary motor and sensory neuropathy with proximal dominant involvement. Am J Hum Genet. 2012; 91: 320-9
|
|
|
12)Lee SS, Lee HJ, Park JM et al. Proximal dominant hereditary motor and sensory neuropathy with proximal dominance association with mutation in the TRK-fused gene. JAMA Neurol. 2013; 70: 607-15
|
|
|
13)Fujita K, Yoshida M, Sako W, et al. Brainstem and spinal cord motor neuron involvement with optineurin inclusions in proximal-dominant hereditary motor and sensory neuropathy. J Neurol Neurosurg Psychiatry. 2011; 82: 1402-3
|
|
|
14)Neuman M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006; 351: 130-3
|
|
|
15)Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006; 351: 602-11
|
|
|
16)Stieber A, Chen Y, Wei S, et al. The fragmented neuronal Golgi apparatus in amyotrophic lateral sclerosis includes the trans-Golgi-network: Functional implications. Acta Neuropathol. 1998; 95: 245-53
|
|
|
17)Beetz C, Johnson A, Schuh AL, et al. Inhibition of TFG function causes hereditary axon degeneration by impairing endoplasmic reticulum structure. Proc Natl Acad Sci U S A. 2013; 110: 5091-6
|
|
|
18)Greco A, Mariani C, Miranda C, et al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol. 1995; 15: 6118-27
|
|
|
19)Hernández I, Pinyol M, Hernández S, et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood. 1999; 64: 3265-8
|
|
|
20)Hisaoka M, Ishida T, Imamura T, et al. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer. 2004; 40: 325-8
|
|
|
21)Miranda C, Roccato E, Raho G, et al. The TFG protein, involved in oncogenic rearrangements, interacts with TANK and NEMO, two proteins involved in the NF-κB pathway. J Cell Physiol. 2006; 208: 154-60
|
|
|
22)Chen L, McCloskey T, Joshi PM, et al. ced-4 and proto-oncogene tfg-1 antagonistically regulate cell size and apoptosis in C. elegans. Curr Biol. 2008; 18: 1025-33
|
|
|
23)Witte K, Schuh AL, Hegermann J, et al. TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol. 2011; 13: 550-8
|
|
|
24)Dion PA, Daoud H, Rouleau GA. Genetics of motor neuron disorders: New insights into pathogenic mechanisms. Nat Rev Genet. 2009; 10: 769-82
|
|
|