1)Ikeda Y, Ohta Y, Kobayashi H, et al. Clinical features of SCA36: A novel spinocerebellar ataxia with motor neuron involvement (Asidan). Neurology. 2012; 79: 333-41
|
|
|
2)Manabe Y, Shiro Y, Takahashi K, et al. A case of spinocerebellar ataxia accompanied by severe involvement of the motor neuron system. Neurol Res. 2000; 22: 567-70
|
|
|
3)Ohta Y, Hayashi T, Nagai M, et al. Two cases of spinocerebellar ataxia accompanied by involvement of the skeletal motor neuron system and bulbar palsy. Intern Med. 2007; 46: 751-5
|
|
|
4)Abe K, Ikeda Y, Kurata T, et al. Cognitive and affective impairments of a novel SCA/MND crossroad mutation Asidan. Eur J Neurol. 2012; 19: 1070-8
|
|
|
5)Ikeda Y, Ohta Y, Kurata T, et al. Acoustic impairment is a distinguishable clinical feature of Asidan/SCA36. J Neurol Sci. 2013; 324: 109-12
|
|
|
6)Morimoto N, Yamashita T, Sato K, et al. Assessment of swallowing in motor neuron disease and Asidan/SCA36 patients with new methods. J Neurol Sci. 2013; 324: 149-55
|
|
|
7)Kobayashi H, Abe K, Matsuura T, et al. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet. 2011; 89: 121-30
|
|
|
8)Sugihara K, Maruyama H, Morino H, et al. The clinical characteristics of spinocerebellar ataxia 36: A study of 2121 Japanese ataxia patients. Mov Disord. 2012; 27: 1158-63
|
|
|
9)Miyashiro A, Sugihara K, Kawarai T, et al. Oromandibular dystonia associated with SCA36. Mov Disord. 2013; 28: 558-9
|
|
|
10)Warner JP, Barron LH, Goudie D, et al. A general method for the detection of large CAG repeat expansions by fluorescent PCR. J Med Genet. 1996; 33: 1022-6
|
|
|
11)Watanabe M, Abe K, Aoki M, et al. Analysis of CAG trinucleotide expansion associated with Machado-Joseph disease. J Neurol Sci. 1996; 136: 101-7
|
|
|
12)Kameya T, Abe K, Aoki M, et al. Analysis of spinocerebellar ataxia type 1 (SCA1)-related CAG trinucleotide expansion in Japan. Neurology. 1995; 45: 1587-94
|
|
|
13)Goldfarb LG, Vasconcelos O, Platonov FA, et al. Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia type 1. Ann Neurol. 1996; 39: 500-6
|
|
|
14)Lomen-Hoerth C, Murphy J, Langmore S, et al. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology. 2003; 60: 1094-7
|
|
|
15)Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006; 351: 602-11
|
|
|
16)Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006; 314: 130-3
|
|
|
17)DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011; 72: 245-56
|
|
|
18)Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011; 72: 257-68
|
|
|
19)Neumann M, Rademakers R, Roeber S, et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain. 2009; 132: 2922-31
|
|
|
20)Garcia-Murias M, Quintans B, Arias M, et al. ʻCosta da Morteʼ ataxia is spinocerebellar ataxia 36: clinical and genetic characterization. Brain. 2012; 135: 1423-35
|
|
|
21)Miyazaki K, Yamashita T, Morimoto N, et al. Early and selective reduction of NOP6 (Asidan) and RNA processing proteins in the motor neuron of ALS model mice. Neurol Res. 2013; 35: 744-54
|
|
|
22)Reddy K, Zamiri B, Stanley SY, et al. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures. J Biol Chem. 2013; 288: 9860-6
|
|
|
23)Mori K, Weng SM, Arzberger T, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013; 339: 1335-8
|
|
|
24)Ash PE, Bieniek KF, Gendron TF, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron. 2013; 77: 639-46
|
|
|