1)File TM. Community-acquired pneumonia. Lancet. 2003; 362: 1991-2001
|
|
|
2)Ishida T, Hashimoto T, Arita M, et al. Etiology of community-acquired pneumonia in hospitalized patients: a 3-year prospective study in Japan. Chest. 1998; 114: 1588-93
|
|
|
3)Saito A, Kohno S, Matsushima T, et al. Prospective multicenter study of the causative organisms of community-acquired pneumonia in adult in Japan. J Infect Chemother. 2006; 12: 63-9
|
|
|
4)Stralin K, Korsgaard J, Olcen P. Evaluation of multiplex PCR for bacterial pathogens applied to bronchoalveolar lavage. Eur Respir J. 2006; 28: 568-75
|
|
|
5)Morozumi M, Nakayama E, Iwata S, et al. Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumonia by real-time PCR with pathogen-specific molecular beacon probes. J Clin Microbiol. 2006; 44: 1440-6
|
|
|
6)Hamano-Hasegawa K, Morozumi M, Nakayama E, et al. Comprehensive detection of causative pathogens using real-time PCR to diagnose pediatric community-acquired pneumonia. J Infect Chemother. 2008; 14: 424-32
|
|
|
7)Okada T, Morozumi M, Sakata H, et al. A practical approach estimating etiologic agents using real-time PCR in pediatric inpatients with community-acquired pneumonia. J Infect Chemother. 2012; 18: 832-40
|
|
|
8)Kim SR, Ki CS, Lee NY. Rapid detection and identification of 12 respiratory viruses using a dual priming oligonucleotide system-based multiplex PCR assay. J Virol Methods. 2009; 156: 111-6
|
|
|
9)Cho MC, Kim Hyewon, An D, et al. Comparison of sputum and nasopharyngeal swab specimens for molecular diagnosis of Mycoplasma pneumonia, Chlamydophila pneumonia, and Legionella pneumophila. Ann Lab Med. 2012; 32: 133-8
|
|
|
10)Choi SH, Hong SB, Ko GB, et al. Viral infection in patients with severe pneumonia requiring intensive care unit admission. Am J Respir Crit Care Med. 2012; 186: 325-32
|
|
|
11)Mahony J, Chong S, Merante F, et al. Development of a respiratory virus panel test for detection of twenty human respiratory virus by use of multiplex PCR and a fluid microbead-based assay. J Clin Microbiol. 2007; 45: 2965-70
|
|
|
12)Pabbaraju K, Tokaryk KL, Wong S, et al. Comparison of the Luminex xTAG Respiratory Viral Panel with in-house nucleic acid amplification tests for diagnosis of respiratory virus infection. J Clin Microbiol. 2008; 46: 3056-62
|
|
|
13)Poritz MA, Blaschke AJ, Byington CL, et al. Film-Array, an automated nested Multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS One. 2011; 6: e26047
|
|
|
14)Pierce VM, Elkan M, Leet M, et al. Comparison of the Idaho Thechnology FilmArray System to real-time PCR for detection of respiratory pathogens in children. J Clin Microbiol. 2012; 50: 364-71
|
|
|
15)Alby K, Popowitch EB, Miller MB. Comparative evaluation of the Nanosphere Verigene RV+ assay and the Simplexa Flu A/B & RSV kit for detection of influenza and respiratory syncytial viruses. J Clin Microbiol. 2013; 51: 1352-3
|
|
|
16)Templeton KE, Scheltinga SA, Eeden WC, et al. Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin Infect Dis. 2005; 41: 345-51
|
|
|
17)Lieberman D, Shimoni A, Shemer-Avni Y, et al. Respiratory viruses in adults with community-acquired pneumonia. Chest. 2010; 138: 811-6
|
|
|
18)Khanna M, Fan J, Pehler-Harrington K, et al. The pneumoplex assays, a multiplex PCR-enzyme hybridization assay that allows simultaneous detection of five organisms, Mycoplasma pneumonia, Chlamydia pneumonia, Legionella pneumophila, Legionella micdadei, and Bordetella pertussis, and its real-time counterpart. J Clin Microbiol. 2005; 43: 565-71
|
|
|
19)Thurman KA, Warner AK, Cowart KC. Detection of Mycoplasma pneumoniae, Chlamydia pneumonia, and Legionella spp. in clinical specimens using a single-tube multiples real-time PCR assay. Diag Microbiolo Infect Dis. 2011; 70: 1-9
|
|
|
20)Brar T, Nagaraj S, Mohapatra S. Microbes and asthma in the elderly: The missing cellular and molecular links. Curr Opin Pulm Med. 2012; 18 14-22
|
|
|
21)Leung TF, To MY, Yeung AC, et al. Multiplex molecular detection of respiratory pathogens in children with asthma exacerbation. Chest. 2010; 137: 348-54
|
|
|
22)Wark PAB, Johonston SL, Bucchieri F, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med. 2005; 201: 937-47
|
|
|
23)Sapey E, Stockley RA. COPD exacerbations. Thorax. 2006; 61: 250-8
|
|
|
24)Perotin JM, Dury S, Renois F, et al. Detection of multiple viral and bacterial infections in acute exacerbation of chronic obstructive pulmonary disease: A pilot prospective study. J Med Virol. 2013; 85: 866-73
|
|
|
25)Hasegawa K, Yamamoto K, Chiba N, et al. Diversity of ampicillin-resistance genes in Haemophilus influenzae in Japan and the United States. Microb Drug Resis. 2003; 9: 39-46
|
|
|
26)Morozumi M, Iwata S, Hasegawa K, et al. Increased macrolide resistance of Mycoplasma pneumonia in pediatric patients with community-acquired pneumonia. Antimicrob Agents Chemother. 2008; 52: 348-50
|
|
|
27)Ubukata K, Iwata S, Sunakawa K. In vitro activities of new ketolide, telithromycin, and eight other macrolide antibiotics against Streptococcus pneumoniae having mefA and ermB genes that mediate macrolide resistance. J Infect Chemother. 2003; 9: 221-6
|
|
|
28)Nagai K, Shibasaki Y, Hasegawa K, et al. Evaluations of the primers for PCR to screen Streptococcus pneumoniae isolates, β-lactam resistance and to detect common macrolide resistance in children. J Antimicrob Chemother. 2001; 48: 915-8
|
|
|
29)Ubukata K. Identification of penicillin and other β-lactam resistance in Streptococcus pneumoniae by PCR. J Infect Chemother. 1997; 3: 190-7
|
|
|
30)Fukushima KY, Hirakata Y, Sugahara K, et al. Rapid screening of topoisomerase gene mutations by a novel melting for early curve analysis method for early warning of fluoroquinolone-resistant Streptococcus pneumoniae emergence. J Clin Microbiol. 2006; 44: 4553-8
|
|
|
31)Wolff BJ, Thacker WL, Schwartz SB, et al. Detection of macrolide resistance in Mycoplasma pneumoniae by real-time PCR and high-resolution melt analysis. Antimicrob Agents Chemother. 2008; 52: 3542-9
|
|
|
32)Appelbaum PC. Antimcrobial resistance in Streptococcus pneumoniae: an overview. Clin Infect Dis. 1992; 15: 77-83
|
|
|
33)Klugman KP. Pneumococcal resistance to antibiotics. Clin Microbiol Rev. 1990; 3: 171-96
|
|
|
34)Ubukata K, Chiba N, Hasegawa K, et al. Antibiotics susceptibility in relation to penicillin-binding protein genes and serotype distribution of Streptococcus pneumonia strains responsible for meningitis in Japan, 1999 to 2002. Antimicrob Agents Chemother. 2004; 48: 1488-94
|
|
|
35)Chiba N, Morozumi M, Ubukata K. Application of the real-time PCR method for genotypic identification ofβ-Lactam resistance in isolates from invasive pneumonococcal disease. Microb Drug Resist. 2012; 148: 149-56
|
|
|
36)生方公子,小林玲子,千葉菜穂子,他.本邦において1998年から2000年の間に分離されたHaemophillus influenzaeの分子疫学解析—肺炎球菌等による市中感染症研究会収集株のまとめ—.日化療会誌. 2002; 50: 794-804
|
|
|
37)Okada T, Morozumi M, Tajima T, et al. Rapid effectiveness of minocycline or doxycycline against macrolide-resistant Mycoplasma pneumoniae infection in a 2001 outbreak among Japanese children. Clin Infect Dis. 2012; 55: 1642-9
|
|
|