1)Campisi J, d’Adda di Fagagna F. Cellular senescence: When bad things happen to good cells. Nat Rev Mol Cell Biol. 2007; 8: 729-40
|
|
|
2)Coppe JP, Desprez PY, Krtolica A, et al. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu Rev Pathol. 2010; 5: 99-118
|
|
|
3)Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol. 2011; 192: 547-56
|
|
|
4)Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med. 2006; 174: 886-93
|
|
|
5)Aoshiba K, Nagai A. Senescence hypothesis for the pathogenetic mechanism of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009; 6: 596-601
|
|
|
6)Minagawa S, Araya J, Numata T, et al. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-β-induced senescence of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2011; 300: L391-401
|
|
|
7)Ito K, Colley T, Mercado N. Geroprotectors as a novel therapeutic strategy for COPD, an accelerating aging disease. Int J Chron Obstruct Pulmon Dis. 2012; 7: 641-52
|
|
|
8)Nakamaru Y, Vuppusetty C, Wada H, et al. A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. Faseb J. 2009; 23: 2810-9
|
|
|
9)Yao H, Chung S, Hwang JW, et al. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest. 2012; 122: 2032-45
|
|
|
10)Rajendrasozhan S, Yang SR, Kinnula VL, et al. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008; 177: 861-70
|
|
|
11)Witt O, Deubzer HE, Milde T, et al. HDAC family: What are the cancer relevant targets? Cancer Lett. 2009; 277: 8-21
|
|
|
12)Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000; 403: 795-800
|
|
|
13)Hall JA, Dominy JE, Lee Y, et al. The sirtuin family’s role in aging and age-associated pathologies. J Clin Invest. 2013; 123: 973-9
|
|
|
14)Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009; 460: 587-91
|
|
|
15)Feldman JL, Dittenhafer-Reed KE, Denu JM. Sirtuin catalysis and regulation. J Biol Chem. 2012; 287: 42419-27
|
|
|
16)Sebastian C, Satterstrom FK, Haigis MC, et al. From sirtuin biology to human diseases: An update. J Biol Chem. 2012; 287: 42444-52
|
|
|
17)Haigis MC, Sinclair DA. Mammalian sirtuins: Biological insights and disease relevance. Annu Rev Pathol. 2010; 5: 253-95
|
|
|
18)Herranz D, Munoz-Martin M, Canamero M, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun. 2010; 1: 3
|
|
|
19)Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007; 6: 105-14
|
|
|
20)Narayan N, Lee IH, Borenstein R, et al. The nad-dependent deacetylase SIRT2 is required for programmed necrosis. Nature. 2012; 492: 199-204
|
|
|
21)Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A. 2008; 105: 14447-52
|
|
|
22)Sundaresan NR, Gupta M, Kim G, et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009; 119: 2758-71
|
|
|
23)Bellizzi D, Rose G, Cavalcante P, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005; 85: 258-63
|
|
|
24)Hirschey MD, Shimazu T, Jing E, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 2011; 44: 177-90
|
|
|
25)Nakagawa T, Lomb DJ, Haigis MC, et al. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009; 137: 560-70
|
|
|
26)Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006; 124: 315-29
|
|
|
27)Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012; 483: 218-21
|
|
|
28)Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008; 102: 703-10
|
|
|
29)Tsai YC, Greco TM, Boonmee A, et al. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics. 2012; 11: 60-76
|
|
|
30)Hara H, Araya J, Takasaka N, et al. Involvement of creatine kinase B in cigarette smoke induced-bronchial epithelial cell senescence. Am J Respir Cell Mol Biol. 2012; 46: 306-12
|
|
|
31)Hwang JW, Chung S, Sundar IK, et al. Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism: Implication in pathogenesis of COPD. Arch Biochem Biophys. 2010; 500: 203-9
|
|
|
32)Kim SR, Lee KS, Park SJ, et al. Involvement of sirtuin 1 in airway inflammation and hyperresponsiveness of allergic airway disease. J Allergy Clin Immunol. 2010; 125: 449-60. e414
|
|
|
33)Legutko A, Marichal T, Fievez L, et al. Sirtuin 1 promotes Th2 responses and airway allergy by repressing peroxisome proliferator-activated receptor-gamma activity in dendritic cells. J Immunol. 2011; 187: 4517-29
|
|
|
34)Beane J, Cheng L, Soldi R, et al. Sirt1 pathway dysregulation in the smoke-exposed airway epithelium and lung tumor tissue. Cancer Res. 2012; 72: 5702-11
|
|
|
35)Xie M, Liu M, He CS. Sirt1 regulates endothelial notch signaling in lung cancer. PLoS One. 2012; 7: e45331
|
|
|
36)Fujii S, Hara H, Araya J, et al. Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology. 2012; 1: 630-41
|
|
|
37)Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med. 2012; 18: 1643-50
|
|
|
38)Takasaka N, Araya J, Hara H, et al. Autophagy induction by SIRT6 through attenuation of IGF-signaling is involved in the regulation of HBEC senescence. J Immunol. 2013; in press
|
|
|
39)Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005; 280: 17187-95
|
|
|
40)Centeno-Baez C, Dallaire P, Marette A. Resveratrol inhibition of inducible nitric oxide synthase in skeletal muscle involves AMPK but not SIRT1. Am J Physiol Endocrinol Metab. 2011; 301: E922-30
|
|
|
41)Patel KR, Scott E, Brown VA, et al. Clinical trials of resveratrol. Ann N Y Acad Sci. 2011; 1215: 161-9
|
|
|
42)Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, et al. Resveratrol and clinical trials: The crossroad from in vitro studies to human evidence. Curr Pharm Des. 2013; 19: 6064-93
|
|
|
43)Siedlinski M, Boer JM, Smit HA, et al. Dietary factors and lung function in the general population: wine and resveratrol intake. Eur Respir J. 2012; 39: 385-91
|
|
|
44)Ganesan S, Faris AN, Comstock AT, et al. Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir Res. 2010; 11: 131
|
|
|
45)Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007; 450: 712-6
|
|
|
46)Ichikawa T, Hayashi R, Suzuki K, et al. Sirtuin 1 activator SRT1720 suppresses inflammation in an ovalbumin-induced mouse model of asthma. Respirology. 2013; 18: 332-9
|
|
|
47)Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010; 285: 8340-51
|
|
|
48)Ota H, Tokunaga E, Chang K, et al. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene. 2006; 25: 176-85
|
|
|