1)Cho Y, Johnson DW, Badve SV, et al. The impact of neutral-pH peritoneal dialysates with reduced glucose degradation products on clinical outcomes in peritoneal dialysis patients. Kidney Int. 2013 May 22 [Epub ahed of print]
|
|
|
2)Kawanishi K, Honda K, Tsukada M, et al. Neutral solution low in glucose degradation products is associated with less peritoneal fibrosis and vascular sclerosis in patients receiving peritoneal dialysis. Perit Dial Int. 2013; 33 :242-51
|
|
|
3)Bonomini M, Pandolfi A, Di Liberato L, et al. L-carnitine is an osmotic agent suitable for peritoneal dialysis. Kidney Int. 2011; 80: 645-54
|
|
|
4)Bonomini M, Di Liberato L, Del Rosso G, et al. Effect of an l-carnitine-containing peritoneal di-alysate on insulin sensitivity in patients treated with CAPD: A 4-Month, Prospective, Multicenter Randomized Trial. Am J Kidney Dis 2013 May 28 [Epub ahed of print]
|
|
|
5)Yaginuma T, Yamamoto I, Yamamoto H, et al. Increased lymphatic vessels in patients with encapsulating peritoneal sclerosis. Perit Dial Int. 2012; 32: 617-27
|
|
|
6)Raica M, Cimpean AM, Ribatti D. The role of podoplanin in tumor progression and metastasis. Anticancer Res. 2008; 28: 2997-3006
|
|
|
7)Braun N, Alscher MD, Fritz P, et al. The spectrum of podoplanin expression in encapsulating peritoneal sclerosis. PLoS One 2012; 7: e53382
|
|
|
8)Loureiro J, Sandoval P, del Peso G, et al. Tamoxifen ameliorates peritoneal membrane damage by blocking mesothelial to mesenchymal transition in peritoneal dialysis. PLoS One. 2013; 8: e61165
|
|
|
9)Korte MR, Fieren MW, Sampimon DE, et al. Tamoxifen is associated with lower mortality of encapsulating peritoneal sclerosis: results of the Dutch Multicentre EPS Study. Nephrol Dial Transplant. 2011; 26: 691-7
|
|
|
10)Kawanishi H, Shintaku S, Moriishi M, et al. Seventeen years’ experience of surgical options for encapsulating peritoneal sclerosis. Adv Perit Dial. 2011; 27: 53-8
|
|
|
11)Margetts P, Bonniaud P, Liu L, et al. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol. 2005; 16: 425-36
|
|
|
12)Loureiro J, Aguilera A, Selgas R, et al. Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol. 2011; 22: 1682-95
|
|
|
13)Catar R, Witowski J, Wagner P, et al. The proto-oncogene c-Fos transcriptionally regulates VEGF production during peritoneal inflammation. Kidney Int. 2013 Jun 12 [Epub ahead of print]
|
|
|
14)Kinashi H, Ito Y, Mizuno M, et al. TGF-β1 promotes lymphangiogenesis during peritoneal fibrosis. J Am Soc Nephrol. 2013; 24: 1627-42
|
|
|
15)Liu Q, Zhang Y, Mao H, et al. A crosstalk between the Smad and JNK signaling in the TGF-β- induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells. PLoS One. 2012; 7: e32009
|
|
|
16)Strippoli R, Benedicto I, Perez Lozano ML, et al. Inhibition of transforming growth factor-activated kinase 1 (TAK1) blocks and reverses epithelial to mesenchymal transition of mesothelial cells. PLoS One. 2012; 7: e31492
|
|
|
17)Lee SH, Kang HY, Kim KS, et al. The monocyte chemoattractant protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related epithelial-mesenchymal transition of peritoneal mesothelial cells. Lab Invest. 2012; 92: 1698-711
|
|
|
18)Kiribayashi K, Masaki T, Naito T, et al. Angiotensin II induces fibronectin expression in human peritoneal mesothelial cells via ERK1/2 and p38 MAPK. Kidney Int. 2005; 67: 1126-35
|
|
|
19)Nakamoto H, Imai H, Fukushima R, et al. Role of the renin-angiotensin system in the pathogenesis of peritoneal fibrosis. Perit Dial Int 2008; 28 (Suppl 3): S83-7
|
|
|
20)Pérez-Martínez J, Pérez-Martínez FC, Carrión B, et al. Aliskiren prevents the toxic effects of peritoneal dialysis fluids during chronic dialysis in rats. PLoS One. 2012; 7: e36268
|
|
|
21)Hung KY, Huang JW, Chen CT, et al. Pentoxifylline modulates intracellular signalling of TGF-beta in cultured human peritoneal mesothelial cells: implications for prevention of encapsulating peritoneal sclerosis. Nephrol Dial Transplant. 2003; 18: 670-6
|
|
|
22)Fang CC, Huang JW, Shyu RS, et al. Fibrin-induced epithelial-to-mesenchymal transition of peritoneal mesothelial cells as a mechanism of peritoneal fibrosis: effects of pentoxifylline. PLoS One. 2012; 7: e44765
|
|
|
23)Yokoi H, Kasahara M, Mori K, et al. Pleiotrophin triggers inflammation and increased peritoneal permeability leading to peritoneal fibrosis. Kidney Int. 2012; 81: 160-9
|
|
|
24)Schächinger V, Assmus B, Erbs S, et al. Intracoronary infusion of bone marrow-derived mononuclear cells abrogates adverse left ventricular remodelling post-acute myocardial infarction: insights from the reinfusion of enriched progenitor cells and infarct remodelling in acute myocardial infarction (REPAIR-AMI) trial. Eur J Heart Fail. 2009; 11: 973-9
|
|
|
25)Syková E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006; 15: 675-87
|
|
|
26)Terai S, Ishikawa T, Omori K, et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells. 2006; 24: 2292-8
|
|
|
27)Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008; 371: 1579-86
|
|
|
28)Duijvestein M, Vos AC, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut. 2010; 59: 1662-9
|
|
|
29)Perico N, Casiraghi F, Introna M, et al. Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin J Am Soc Nephrol. 2011; 6: 412-22
|
|
|
30)Roemeling-van Rhijn M, Reinders ME, de Klein A, et al. Mesenchymal stem cells derived from adipose tissue are not affected by renal disease. Kidney Int. 2012; 82: 748-58
|
|
|
31)Tögel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 2005; 289: F31-42
|
|
|
32)Hu J, Zhang L, Wang N, et al. Mesenchymal stem cells attenuate ischemic acute kidney injury by inducing regulatory T cells through splenocyte interactions. Kidney Int. 2013; 84: 521-31
|
|
|
33)Bi B, Schmitt R, Israilova M, et al. Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol. 2007; 18: 2486-96
|
|
|
34)Furuhashi K, Tsuboi N, Shimizu A, et al. Serum-starved adipose-derived stromal cells ameliorate crescentic GN by promoting immunoregulatory macrophages. J Am Soc Nephrol. 2013; 24: 587-603
|
|
|
35)Hekking L, Zweers M, Keuning E, et al. Apparent successful mesothelial cell transplantation hampered by peritoneal activation. Kidney Int. 2005; 68: 2362-7
|
|
|
36)Tülpar S, Poyrazoglu MH, Özbilge H, et al. Modulation of inflammation by mesenchymal stem cell transplantation in peritoneal dialysis in rats. Ren Fail. 2012; 34: 1317-23
|
|
|
37)Sekiguchi Y, Hamada C, Ro Y, et al. Differentiation of bone marrow-derived cells into regenerated mesothelial cells in peritoneal remodeling using a peritoneal fibrosis mouse model. J Artif Organs. 2012; 15: 272-82
|
|
|
38)Wang N, Li Q, Zhang L, et al. Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6. PLoS One. 2012; 7: e43768
|
|
|
39)Wang N, Shao Y, Mei Y, et al. Novel mechanism for mesenchymal stem cells in attenuating peritoneal adhesion: accumulating in the lung and secreting tumor necrosis factor α-stimulating gene-6. Stem Cell Res Ther. 2012; 3: 51
|
|
|
40)Ueno T, Nakashima A, Doi S, et al. Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-β1 signaling. Kidney Int. 2013; 84: 297-307
|
|
|