1)Boron WF, Boulpaep EL. Medical physiology. Philadelphia: Saunders; 2003
|
|
|
2)Despopoulos A, Silbernagl S. Color atlas of physiology. 5th ed. Stuttgart: Thieme; 2003
|
|
|
3)坂井建雄, 河原克雅. 人体の正常構造と機能. 改訂2版, 5章. 腎・泌尿器. 東京: 日本医事新報社; 2012
|
|
|
4)Wagner CA, Kovacikova J, Stehberger PA, et al. Renal acid-base transport: Old and new players. Nephron Physiol. 2006; 103: 1-6
|
|
|
5)Wagner CA, Devuyst O, Bourgeois S, et al. Regulated acid-base transport in the collecting duct. Pflügers Arch. 2009; 458: 137-56
|
|
|
6)Hori K, Nagai T, Izumi Y, et al. Vasopressin V1a receptor is required for nucleocytoplasmic transport of mineralocorticoid receptor. Am J Physiol Renal Physiol. 2012; 303: F1080-8
|
|
|
7)Jacques T, Picard N, Miller RL, et al. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol. 2013; 24: 1104-13
|
|
|
8)Burnell JM, Scribner BH, Uyeno BT, et al. The effect in humans of extracellular pH change on the relationship between serum potassium concentration and intracellular potassium. J Clin Invest. 1956; 35: 935-9
|
|
|
9)Kawahara K, Anzai N. Potassium transport and potassium channels in the kidney tubules. Jpn J Physiol. 1997; 47: 1-10
|
|
|
10)Aronson PS, Giebisch G. Effects of pH on potassium: new explanations for old observations. J Am Soc Nephrol. 2011; 22: 1981-9
|
|
|
11)Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010; 90: 559-605
|
|
|
12)Stanton BA, Giebisch GH. Potassium transport by the renal distal tubule: effects of potassium loading. Am J Physiol. 1982; 243: F487-93
|
|
|
13)Muto S, Sansom S, Giebisch G. Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits. J Clin Invest. 1988; 81: 376-80
|
|
|
14)Hebert SC, Desir G, Giebisch G, et al. Molecular diversity and regulation of renal potassium channels. Physiol Rev. 2005; 85: 319-71
|
|
|
15)Schlatter E, Bleich M, Hirsch J, et al. pH-sensitive K+ channels in the distal nephron. Nephrol Dial Transplant. 1993; 8: 488-90
|
|
|
16)Schlatter E, Haxelmans S, Hirsch J, et al. pH dependence of K+ conductances of rat cortical collecting duct principal cells. Pflügers Arch. 1994; 428: 631-40
|
|
|
17)Mathie A, Al-Moubarak E, Veale EL. Gating of two pore domain potassium channels. J Physiol. 2010; 588: 3149-56
|
|
|
18)Goldstein SA, Bayliss DA, Kim D, et al. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev. 2005; 57: 527-40
|
|
|
19)Lesage F, Barhanin J. Molecular physiology of pH-sensitive background K2P channels. Physiology (Bethesda). 2011; 26: 424-37
|
|
|
20)Cid LP, Roa-Rojas HA, Niemeyer MI, et al. TASK-2: a K2P K+ channel with complex regulation and diverse physiological functions. Front Physiol. 2013; 4: 198
|
|
|
21)Duprat F, Lesage F, Fink M, et al. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 1997; 16: 5464-71
|
|
|
22)Niemeyer MI, Cid LP, Peña-Münzenmayer G, et al. Separate gating mechanisms mediate the regulation of K2P potassium channel TASK-2 by intra- and extracellular pH. J Biol Chem. 2010; 285: 16467-75
|
|
|
23)Gestreau C, Heitzmann D, Thomas J, et al. Task2 potassium channels set central respiratory CO2 and O2 sensitivity. Proc Natl Acad Sci U S A. 2010; 107: 2325-30
|
|
|
24)Brown D, Wagner CA. Molecular mechanisms of acid-base sensing by the kidney. J Am Soc Nephrol. 2012; 23: 774-80
|
|
|
25)Warth R, Barrière H, Meneton P, et al. Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci U S A. 2004; 101: 8215-20
|
|
|
26)Davies LA, Hu C, Guagliardo NA, et al. TASK channel deletion in mice causes primary hyperaldosteronism. Proc Natl Acad Sci USA. 2008; 105: 2203-2208. Erratum in: Proc Natl Acad Sci U S A. 2008; 105: 13696
|
|
|
27)Heitzmann D, Derand R, Jungbauer S, et al. Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. EMBO J. 2008; 27: 179-87
|
|
|
28)Matsuoka H, Harada K, Nakamura J, et al. Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K+ 1 channels in adrenal medullary cells and PC12 cells. Pflügers Arch. 2013; 465: 1051-64
|
|
|
29)Guagliardo NA, Yao J, Bayliss DA, et al. TASK channels are not required to mount an aldosterone secretory response to metabolic acidosis in mice. Mol Cell Endocrinol. 2011; 336: 47-52
|
|
|
30)Guagliardo NA, Yao J, Hu C, et al. TASK-3 channel deletion in mice recapitulates low-renin essential hypertension. Hypertension. 2012; 59: 999-1005
|
|
|