1)Kimmelstiel P, Wilson C. Intercapillary lesions in the glomeruli of the kidney. Am J Pathol. 1936; 12: 83-98. 7
|
|
|
2)Nakagawa T, Tanabe K, Croker BP, et al. Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat Rev Nephrol. 2011; 7: 36-44
|
|
|
3)Ikeda K, Kida H, Yokoyama H, et al. Participation of collagen fibers in morphogenesis of diabetic nodular lesions. Nihon Jinzo Gakkai Shi. 1988; 30: 843-53
|
|
|
4)Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010; 21: 556-63
|
|
|
5)Oh SW, Kim S, Na KY, et al. Clinical implications of pathologic diagnosis and classification for diabetic nephropathy. Diabetes Res Clin Pract. 2012; 97: 418-24
|
|
|
6)Okada, T, Nagao, T, Matsumoto H, et al. Histological predictors for renal prognosis in diabetic nephropathy in diabetes mellitus type 2 patients with overt proteinuria. Nephrology (Carlton). 2012; 17: 68-75
|
|
|
7)Ninomiya, T, Perkovic, V, de Galan BE, et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol. 2009; 20: 1813-21
|
|
|
8)Yokoyama H, Sone H, Oishi M, et al. Prevalence of albuminuria and renal insufficiency and associated clinical factors in type 2 diabetes: the Japan Diabetes Clinical Data Management study (JDDM15). Nephrol Dial Transplant. 2009; 24: 1212-9
|
|
|
9)厚生労働省科学研究費補助金.腎疾患対策研究事業 糖尿病性腎症の病態解明と新規治療法確立のための評価法の開発に関する研究(研究代表者 和田隆志). 平成21-23年度総括・分担研究報告書, 2012
|
|
|
10)Toyama T, Furuichi K, Ninomiya T, et al. The impacts of albuminuria and low eGFR on the risk of cardiovascular death, all-cause mortality, and renal events in diabetic patients: Meta-Analysis. PloS One. 2013; 8: e71810
|
|
|
11)Furuichi K, Shimizu M, Toyama T, et al. Japan Diabetic Nephropathy Cohort Study: study design, methods, and implementation. Clin Exp Nephrol. 2013; 17: 819-26
|
|
|
12)Shimizu M, Furuichi K, Toyama T, et al. Hypertension, KSGfRDa: Long-term outcomes of Japanese type 2 diabetic patients with biopsy-proven diabetic nephropathy. Diabetes Care. 2013; 36: 3655-62
|
|
|
13)Raparia K, Usman I, Kanwar YS. Renal morphologic lesions reminiscent of diabetic nephropathy. Arch Pathol Lab Med. 2013; 137: 351-9
|
|
|
14)Wada T, Shimizu M, Yokoyama H, et al. Nodular lesions and mesangiolysis in diabetic nephropathy. Clin Exp Nephrol. 2013; 17: 3-9
|
|
|
15)Inagi R, Yamamoto Y, Nangaku M, et al. A severe diabetic nephropathy model with early development of nodule-like lesions induced by megsin overexpression in RAGE/iNOS transgenic mice. Diabetes. 2006; 55: 356-66
|
|
|
16)Zhao HJ, Wang S, Cheng H, et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol. 2006; 17: 2664-9
|
|
|
17)Mohan S, Reddick RL, Musi N, et al. Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab Invest. 2008; 88: 515-28
|
|
|
18)Veron D, Bertuccio CA, Marlier A, et al. Podocyte vascular endothelial growth factor (Vegf(1)(6)(4)) overexpression causes severe nodular glomerulosclerosis in a mouse model of type 1 diabetes. Diabetologia. 2011; 54: 1227-41
|
|
|
19)Furuichi K, Hisada Y, Shimizu M, et al. Matrix metalloproteinase-2 (MMP-2) and membrane-type 1 MMP (MT1-MMP) affect the remodeling of glomerulosclerosis in diabetic OLETF rats. Nephrol Dial Transplant. 2011; 26: 3124-31
|
|
|
20)Yu L, Su Y, Paueksakon P, et al. Integrin alpha1/Akita double-knockout mice on a Balb/c background develop advanced features of human diabetic nephropathy. Kidney Int. 2012; 81: 1086-97
|
|
|
21)Watanabe M, Nakashima H, Miyake K, et al. Aggravation of diabetic nephropathy in OLETF rats by Thy-1.1 nephritis. Clin Exp Nephrol. 2011; 15: 25-9
|
|
|
22)Pichaiwong W, Hudkins KL, Wietecha T, et al. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J Am Soc Nephrol. 2013; 24: 1088-102
|
|
|
23)Wada T, Yokoyama H, Matsushima K, et al. Monocyte chemoattractant protein-1: does it play a role in diabetic nephropathy? Nephrol Dial Transplant. 2003; 18: 457-9
|
|
|
24)Wada T, Furuichi K, Sakai N, et al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 2000; 58: 1492-9
|
|
|
25)Flaquer M, Franquesa M, Vidal A, et al. Hepatocyte growth factor gene therapy enhances infiltration of macrophages and may induce kidney repair in db/db mice as a model of diabetes. Diabetologia. 2012; 55: 2059-68
|
|
|
26)Miyamoto S, Shikata K, Miyasaka K, et al. Cholecystokinin plays a novel protective role in diabetic kidney through anti-inflammatory actions on macrophage: anti-inflammatory effect of cholecystokinin. Diabetes. 2012; 61: 897-907
|
|
|
27)Advani A, Huang Q, Thai K, et al. Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism. Am J Pathol. 2011; 178: 2205-14
|
|
|