1)Anzai N, Jutabha P, Amonpatumrat-Takahashi S, et al. Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies. Clin Exp Nephrol. 2012; 16: 89-95
|
|
|
2)安西尚彦.全ゲノム関連解析がひも解く痛風発症因子としての尿酸トランスポーター.医学のあゆみ.2010; 6: 498-9
|
|
|
3)Anzai N, Endou H. Chapter 4 Renal basis of hyperuricemia. In: Terkeltaub R, editor. Gout and crystal arthropathies. 1st ed. Philadelphia: Elsevier Saunders; 2012. p. 51-8
|
|
|
4)安西尚彦,堂前真理子.腎における尿酸輸送の関係について教えて下さい.腎と透析.2012; 73: 397-400
|
|
|
5)高田龍平.尿酸トランスポーターと高尿酸血症・痛風発作について教えて下さい.腎と透析.2012; 73: 364-8
|
|
|
6)Roch-Ramel F, Guisan B. Renal transport of urate in humans. News Physiol Sci. 1999; 14: 80-4
|
|
|
7)Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002; 417: 447-52
|
|
|
8)Shin HJ, Takeda M, Enomoto A, et al. Interactions of urate transporter URAT1 in human kidney with uricosuric drugs. Nephrology. 2011; 16: 156-62
|
|
|
9)Miura D, Anzai N, Jutabha P, et al. Human urate transporter 1 (hURAT1) mediates the transport of orotate. J Physiol Sci. 2011; 61: 253-7
|
|
|
10)Kamatani Y, Matsuda K, Okada Y, et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet. 2010; 42: 210-5
|
|
|
11)Tasic V, Hynes AM, Kitamura K, et al. Clinical and functional characterization of URAT1 variants. PLoS One. 2011; 6: e28641
|
|
|
12)Anzai N, Jutabha P, Kimura T, et al. Urate transport: Regulation of serum urate levels in human. Curr Rheumatol Rev. 2011; 7: 123-31
|
|
|
13)Hagos Y, Stein D, Ugele B, et al. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007; 18: 430-9
|
|
|
14)Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009; 5: e1000504
|
|
|
15)Bahn A, Hagos Y, Reuter S, et al. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem. 2008; 283: 16332-41
|
|
|
16)Li S, Sanna S, Maschio A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007; 3: e194
|
|
|
17)Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008; 40: 437-42
|
|
|
18)Döring A, Gieger C, Mehta D, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008; 40: 430-6
|
|
|
19)Augustin R, Carayannopoulos MO, Dowd LO, et al. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J Biol Chem. 2004; 279: 16229-36
|
|
|
20)Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008; 283: 26834-8
|
|
|
21)Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008; 83: 744-51
|
|
|
22)Dinour D, Gray NK, Campbell S, et al. Homozygous SLC2A9 mutations cause severe renal hypo-uricemia. J Am Soc Nephrol. 2010; 21: 64-72
|
|
|
23)Nakanishi T, Ohya K, Shimada S, et al. Functional cooperation of URAT1 (SLC22A12) and URATv1 (SLC2A9) in renal reabsorption of urate. Nephrol Dial Transplant. 2013; 28: 603-11
|
|
|
24)Busch AE, Schuster A, Waldegger S, et al. Expression of a renal type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proc Natl Acad Sci U S A. 1996; 93: 5347-51
|
|
|
25)Iharada M, Miyaji T, Fujimoto T, et al. Type 1 sodium-dependent phosphate transporter (SLC17A1 Protein) is a Cl (-) -dependent urate exporter. J Biol Chem. 2010; 285: 26107-13
|
|
|
26)Miyaji T, Kawasaki T, Togawa N, et al. Type 1 Sodium-dependent phosphate transporter acts as a membrane potential-driven urate exporter. Curr Mol Pharmacol. 2013; 6: 88-94
|
|
|
27)Urano W, Taniguchi A, Anzai N, et al. Sodium-dependent phosphate cotransporter type 1 (NPT1) sequence polymorphisms in male patients with gout. Ann Rheum Dis. 2010; 69: 1232-4
|
|
|
28)Hollis-Moffatt JE, Phipps-Green AJ, Chapman B, et al. The renal urate transporter SLC17A1 locus: confirmation of association with gout. Arthritis Res Ther. 2012; 14: R92
|
|
|
29)Jutabha P, Kanai Y, Hosoyamada H, et al. Iden-tification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule. J Biol Chem. 2003; 278: 27930-8
|
|
|
30)Dehghan A, Köttgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008; 372: 1953-61
|
|
|
31)Jutabha P, Anzai N, Kitamura K, et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J Biol Chem. 2010; 285: 35123-32
|
|
|
32)Anzai N, Endou H. Urate transporters: an evolving field. Semin Nephrol. 2011; 31: 400-9
|
|
|
33)Jutabha P, Anzai N, Kimura T, et al. Functional analysis of human sodium-phosphate transporter 4 (NPT4/SLC17A3) polymorphisms. J Pharmacol Sci. 2011; 115: 249-53
|
|
|
34)van Aubel, RA, Smeets PH, van den Heuvel JJ, et al. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol. 2005; 288: F327-33
|
|
|
35)Hasegawa M, Kusuhara H, Adachi M, et al. Multidrug resistance-associated protein 4 is involved in the urinary excretion of hydrochlorothiazide and furosemide. J Am Soc Nephrol. 2007; 18: 37-45
|
|
|
36)Polgar O, Robey RW, Bates SE. ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol. 2008; 4: 1-15
|
|
|
37)Woodward OM, Köttgen A, Coresh J, et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009; 106: 10338-42
|
|
|
38)Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med. 2009; 1: 5ra11
|
|
|
39)Hosomi A, Nakanishi T, Fujita T, et al. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS One. 2012; 7: e30456
|
|
|
40)Ichida K, Matsuo H, Takada T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012; 3: 764
|
|
|
41)Yano H, Tamura Y, Kobayashi K, et al. Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease. Clin Exp Nephrol. 2013 (in press)
|
|
|
42)Saison C, Helias V, Ballif BA, et al. Null alleles of ABCG2 encoding the breast cancer resistance protein define the new blood group system Junior. Nat Genet. 2012; 44: 174-7
|
|
|