1)Fukuyama Y, Osawa M, Suzuki H. Congenital progressive muscular dystrophy of the Fukuyama type-clinical, genetic and pathological considera-tions. Brain Dev. 1981; 3: 1-29
|
|
|
2)Kobayashi K, Nakahori Y, Miyake M, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature. 1998; 394: 388-92
|
|
|
3)Yoshida A, Kobayashi K, Manya H, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltrans-ferase, POMGnT1. Dev Cell. 2001; 1: 717-24
|
|
|
4)Taniguchi-Ikeda M, Kobayashi K, Kanagawa M, et al. Pathogenic exon-trapping by SVA retrotrans-poson and rescue in Fukuyama muscular dystrophy. Nature. 2011; 478: 127-31
|
|
|
5)Toda T, Segawa M, Nomura Y, et al. Localization of a gene for Fukuyama type congenital muscular dystrophy to chromosome 9q31-33. Nat Genet. 1993; 5: 283-6
|
|
|
6)Toda T, Miyake M, Kobayashi K, et al. Linkage-disequilibrium mapping narrows the Fukuyama-type congenital muscular dystrophy (FCMD) candidate region to <100 kb. Am J Hum Genet. 1996; 59: 1313-20
|
|
|
7)Watanabe M, Kobayashi K, Jin F, et al. Founder SVA retrotransposal insertion in Fukuyama-type congenital muscular dystrophy and its origin in Japanese and Northeast Asian populations. Am J Med Genet. 2005; 138: 344-8
|
|
|
8)Kondo-Iida E, Kobayashi K, Watanabe M, et al. Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet. 1999; 8: 2303-9
|
|
|
9)Murakami T, Hayashi YK, Noguchi S, et al. Fukutin gene mutations cause dilated cardio-myopathy with minimal muscle weakness. Ann Neurol. 2006; 60: 597-602
|
|
|
10)Godfrey C, Clement E, Mein R, et al. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain. 2007; 130: 2725-35
|
|
|
11)Kanagawa M, Toda T. The genetic and molecular basis of muscular dystrophy: roles of cell-matrix linkage in the pathogenesis. J Hum Genet. 2006; 51: 915-26
|
|
|
12)Michele DE, Barresi R, Kanagawa M, et al. Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature. 2002; 418: 417-21
|
|
|
13)Yoshida-Moriguchi T, Yu L, Stalnaker SH, et al. O-mannosyl phosphorylation of alpha-dystro-glycan is required for laminin binding. Science. 2010; 327: 88-92
|
|
|
14)Kuga A, Kanagawa M, Sudo A, et al. Absence of post-phosphoryl modification in dystroglycano-pathy mouse models and wild-type tissues expres-sing a non-laminin binding form of alpha-dystro-glycan. J Biol Chem. 2012; 287: 9560-7
|
|
|
15)Inamori K, Yoshida-Moriguchi T, Hara Y, et al. Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science. 2012; 335: 93-6
|
|
|
16)Cordaux R, Batzer MA. The impact of retro-transposons on human genome evolution. Nat Rev Genet. 2009; 10: 691-703
|
|
|
17)Kanagawa M, Nishimoto A, Chiyonobu T, et al. Residual laminin-binding activity and enhanced dystroglycan glycosylation in novel model mice to dystroglycanopathy. Hum Mol Genet. 2009; 18: 621-31
|
|
|
18)Goemans NM, Tulinius M, van den Akker JT, et al. Systemic administration of PRO051 in Duchennes muscular dystrophy. N Engl J Med. 2011; 364: 1513-22
|
|
|
19)Cirak S, Arechavala-Gomeza V, Guglieri M, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligo-mer treatment: an open-label, phase 2, dose-escalation study. Lancet. 2011; 378: 595-605
|
|
|