1)米倉義晴.イオマゼニルSPECTの神経疾患における有用性.In: 柳澤信夫,篠原章人,岩田 誠,他,編.Annual Review神経2008. 東京: 中外医学社; 2008. p.44-9
|
|
|
2)Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993; 64: 803-12
|
|
|
3)松田博史.Arterial spin labelingによる脳血流測定.In: 鈴木則宏,祖父江 元,荒木信夫,他,編.Annual Review神経2010. 東京: 中外医学社; 2010. p.51-6
|
|
|
4)Shulman G, Fiez J, Corbetta M, et al. Common blood flow changes across visual tasks: II. decreases in cerebral cortex. J Cogn Neurosci. 1997; 9: 648-63
|
|
|
5)Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. NeuroImage. 2007; 37: 1083-90; discussion 97-9
|
|
|
6)Sperling RA, Laviolette PS, OKeefe K, et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron. 2009; 63: 178-88
|
|
|
7)Sheline YI, Morris JC, Snyder AZ, et al. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42. J Neurosci. 2010; 30: 17035-40
|
|
|
8)Bonnelle V, Ham TE, Leech R, et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci U S A. 2012; 109: 4690-5
|
|
|
9)Hawellek DJ, Hipp JF, Lewis CM, et al. Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proc Natl Acad Sci U S A. 2011; 108: 19066-71
|
|
|
10)Logothetis NK, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001; 412: 150-7
|
|
|
11)Friston KJ, Josephs O, Rees G, et al. Nonlinear event-related responses in fMRI. Magn Reson Med. 1998; 39: 41-52
|
|
|
12)Kriegeskorte N, Cusack R, Bandettini P. How does an fMRI voxel sample the neuronal activity pattern: compact-kernel or complex spatio-temporal filter? NeuroImage. 2010; 49: 1965-76
|
|
|
13)Chuquet J, Quilichini P, Nimchinsky EA, et al. Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. J Neurosci. 2010; 30: 15298-303
|
|
|
14)Magistretti PJ, Pellerin L. The contribution of astrocytes to the 18F-2-deoxyglucose signal in PET activation studies. Mol Psychiatry. 1996; 1: 445-52
|
|
|
15)Takano T, Tian GF, Peng W, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci. 2006; 9: 260-7
|
|
|
16)Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006; 100: 328-35
|
|
|
17)Krings T, Erberich SG, Roessler F, et al. MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: implications for functional MR imaging. AJNR Am J Neuroradiol. 1999; 20: 1907-14
|
|
|
18)Handwerker DA, Ollinger JM, DEsposito M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage. 2004; 21: 1639-51
|
|
|
19)So much more to know. Science. 2005; 309: 78-102
|
|
|
20)Garczarek F, Gerwert K. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature. 2006; 439: 109-12
|
|
|
21)Le Bihan D. The ʻwet mind: water and functional neuroimaging. Phys Med Biol. 2007; 52: R57-90
|
|
|
22)Lipton P. Effects of membrane depolarization on light scattering by cerebral cortical slices. J Physiol. 1973; 231: 365-83
|
|
|
23)Pannasch U, Vargova L, Reingruber J, et al. Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci U S A. 2011; 108: 8467-72
|
|
|
24)Stroman PW, Lee AS, Pitchers KK, et al. Magnetic resonance imaging of neuronal and glial swelling as an indicator of function in cerebral tissue slices. Magn Reson Med. 2008; 59: 700-6
|
|
|
25)Flint J, Hansen B, Vestergaard-Poulsen P, et al. Diffusion weighted magnetic resonance imaging of neuronal activity in the hippocampal slice model. NeuroImage. 2009; 46: 411-8
|
|
|
26)Yacoub E, Uludag K, Ugurbil K, et al. Decreases in ADC observed in tissue areas during activation in the cat visual cortex at 9.4 T using high diffusion sensitization. Magn Reson Imaging. 2008; 26: 889-96
|
|
|
27)Aso T, Urayama SI, Poupon C, et al. An intrinsic diffusion response function for analyzing diffusion functional MRI time series. Neuro-Image. 2009; 47: 1487-95
|
|
|
28)Aso T, Urayama SI, Fukuyama H, et al. Comparison of diffusion-weighted fMRI and BOLD fMRI responses in a verbal working memory task. NeuroImage. In press
|
|
|
29)Le Bihan D, Urayama SI, Aso T, et al. Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc Natl Acad Sci U S A. 2006; 103: 8263-8
|
|
|
30)Feldman RE, Scholl TJ, Alford JK, et al. Results for diffusion-weighted imaging with a fourth-channel gradient insert. Magn Reson Med. 2011; 66: 1798-808
|
|
|