1)Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990; 13: 266-71
|
|
|
2)Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986; 9: 357-81
|
|
|
3)Doya K. Modulators of decision making. Nat Neurosci. 2008; 11: 410-6
|
|
|
4)Kimura M, Minamimoto T, Matsumoto N, et al. Monitoring and switching of cortico-basal ganglia loop functions by the thalamo-striatal system. Neurosci Res. 2004; 48: 355-60
|
|
|
5)Groenewegen HJ, Berendse HW. The specificity of the ʻnonspecific midline and intralaminar thalamic nuclei. Trends Neurosci. 1994; 17: 52-7
|
|
|
6)Smith Y, Raju D, Nanda B, et al. The thalamostriatal systems: anatomical and func-tional organization in normal and parkinsonian states. Brain Res Bull. 2009; 78: 60-8
|
|
|
7)Smith Y, Raju DV, Pare JF, et al. The thalamo-striatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci. 2004; 27: 520-7
|
|
|
8)Jones EG. The Thalamus. 2nd ed. New York: Cambridge University Press; 2007
|
|
|
9)Sadikot AF, Rymar VV. The primate centro-median-parafascicular complex: anatomical organi-zation with a note on neuromodulation. Brain Res Bull. 2009; 78: 122-30
|
|
|
10)Nakano K, Hasegawa Y, Tokushige A, et al. Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res. 1990; 537: 54-68
|
|
|
11)Francois C, Percheron G, Parent A, et al. Topography of the projection from the central complex of the thalamus to the sensorimotor striatal territory in monkeys. J Comp Neurol. 1991; 305: 17-34
|
|
|
12)Fenelon G, Francois C, Percheron G, et al. Topographic distribution of the neurons of the central complex (centre median-parafascicular complex) and of other thalamic neurons project-ing to the striatum in macaques. Neuroscience. 1991; 45: 495-510
|
|
|
13)Ito S, Craig A. Striatal projections of the vagal-responsive region of the thalamic parafascicular nucleus in macaque monkeys. J Comp Neurol. 2008; 506: 301-27
|
|
|
14)Berendse HW, Groenewegen HJ. Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol. 1990; 299: 187-228
|
|
|
15)Smith Y, Parent A. Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience. 1986; 18: 347-71
|
|
|
16)Berendse HW, Groenewegen HJ. Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuro-science. 1991; 42: 73-102
|
|
|
17)Sidibe M, Smith Y. Differential synaptic innervation of striatofugal neurones projecting to the internal or external segments of the globus pallidus by thalamic afferents in the squirrel monkey. J Comp Neurol. 1996; 365: 445-65
|
|
|
18)Doig NM, Moss J, Bolam JP. Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci. 2010; 30: 14610-8
|
|
|
19)Raju DV, Shah DJ, Wright TM, et al. Differential synaptology of vGluT2-containing thalamostriatal afferents between the patch and matrix compart-ments in rats. J Comp Neurol. 2006; 499: 231-43
|
|
|
20)Lacey CJ, Bolam JP, Magill PJ. Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J Neurosci. 2007; 27: 4374-84
|
|
|
21)Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electro-encephalogr Clin Neurophysiol. 1949; 1: 455-73
|
|
|
22)Van der Werf YD, Witter MP, Groenewegen HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev. 2002; 39: 107-40
|
|
|
23)Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005; 6: 533-44
|
|
|
24)Matsumoto N, Minamimoto T, Graybiel AM, et al. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol. 2001; 85: 960-76
|
|
|
25)Minamimoto T, Kimura M. Participation of the thalamic CM-Pf complex in attentional orienting. J Neurophysiol. 2002; 87: 3090-101
|
|
|
26)Kinomura S, Larsson J, Gulyas B, et al. Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science. 1996; 271: 512-5
|
|
|
27)Brown HD, Baker PM, Ragozzino ME. The parafascicular thalamic nucleus concomitantly influences behavioral flexibility and dorsomedial striatal acetylcholine output in rats. J Neurosci. 2010; 30: 14390-8
|
|
|
28)Kawagoe R, Takikawa Y, Hikosaka O. Expectation of reward modulates cognitive signals in the basal ganglia. Nat Neurosci. 1998; 1: 411-6
|
|
|
29)Lauwereyns J, Watanabe K, Coe B, et al. A neural correlate of response bias in monkey caudate nucleus. Nature. 2002; 418: 413-7
|
|
|
30)Hori Y, Minamimoto T, Kimura M. Neuronal encoding of reward value and direction of actions in the primate putamen. J Neurophysiol. 2009; 102: 3530-43
|
|
|
31)Lau B, Glimcher PW. Value representations in the primate striatum during matching behavior. Neuron. 2008; 58: 451-63
|
|
|
32)Samejima K, Ueda Y, Doya K, et al. Repre-sentation of action-specific reward values in the striatum. Science. 2005; 310: 1337-40
|
|
|
33)Minamimoto T, Hori Y, Kimura M. Complemen-tary process to response bias in the centromedian nucleus of the thalamus. Science. 2005; 308: 1798-801
|
|
|
34)Minamimoto T, Hori Y, Kimura M. Roles of the thalamic CM-PF complex-Basal ganglia circuit in externally driven rebias of action. Brain Res Bull. 2009; 78: 75-9
|
|
|
35)Nanda B, Galvan A, Smith Y, et al. Effects of stimulation of the centromedian nucleus of the thalamus on the activity of striatal cells in awake rhesus monkeys. Eur J Neurosci. 2009; 29: 588-98
|
|
|
36)Ding JB, Guzman JN, Peterson JD, et al. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron. 2010; 67: 294-307
|
|
|
37)Smeal RM, Gaspar RC, Keefe KA, et al. A rat brain slice preparation for characterizing both thalamostriatal and corticostriatal afferents. J Neurosci Methods. 2007; 159: 224-35
|
|
|
38)Kravitz AV, Freeze BS, Parker PR, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010; 466: 622-6
|
|
|
39)McFarland NR, Haber SN. Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci. 2000; 20: 3798-813
|
|
|
40)McFarland NR, Haber SN. Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque. J Comp Neurol. 2001; 429: 321-36
|
|
|
41)Galvan A, Smith Y. The primate thalamostriatal systems: Anatomical organization, functional roles and possible involvement in Parkinsons disease. Basal Ganglia. 2011; 1: 19-89
|
|
|
42)Kato S, Kuramochi M, Kobayashi K, et al. Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination. J Neurosci. 2011; 31: 17169-79
|
|
|
43)Truong L, Brooks D, Amaral F, et al. Relative preservation of thalamic centromedian nucleus in parkinsonian patients with dystonia. Mov Disord. 2009; 24: 2128-35
|
|
|
44)Henderson JM, Carpenter K, Cartwright H, et al. Loss of thalamic intralaminar nuclei in progres-sive supranuclear palsy and Parkinsons disease: clinical and therapeutic implications. Brain. 2000; 123(Pt 7): 1410-21
|
|
|