1)Tooze SA, Yoshimori T. The origin of the autophagosomal membrane. Nat Cell Biol. 2010; 12: 831-5
|
|
|
2)Mizushima N, Komatsu M. Autophagy: reno-vation of cells and tissues. Cell. 2011; 147: 728-41
|
|
|
3)Ravikumar B, Vacher C, Berger Z, et al. Inhi-bition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004; 36: 585-95
|
|
|
4)Bjørkøy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005; 171: 603-14
|
|
|
5)Hara T, Nakamura K, Matsui M, et al. Suppres-sion of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006; 441: 885-9
|
|
|
6)Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006; 441: 880-4
|
|
|
7)Komatsu M, Waguri S, Koike M, et al. Homeo-static levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007; 131: 1149-63
|
|
|
8)Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007; 282: 24131-45
|
|
|
9)Ichimura Y, Kumanomidou T, Sou Y-S, et al. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem. 2008; 283: 22847-57
|
|
|
10)Van Der Veen AG, Ploegh HL. Ubiquitin-like proteins. Annu Rev Biochem. 2012; 81: 323-57
|
|
|
11)Shaid S, Brandts CH, Serve H, et al. Ubiquiti-nation and selective autophagy. Cell Death Differ. 2012 Jun 22 [Epub ahead of print]
|
|
|
12)Long J, Gallagher TRA, Cavey JR, et al. Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch. J Biol Chem. 2008; 283: 5427-40
|
|
|
13)Matsumoto G, Wada K, Okuno M, et al. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell. 2011; 44: 279-89
|
|
|
14)Filimonenko M, Isakson P, Finley KD, et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell. 2010; 38: 265-79
|
|
|
15)Itakura E, Mizushima N. p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol. 2011; 192: 17-27
|
|
|
16)Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004; 15: 1101-11
|
|
|
17)Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010; 189: 211-21
|
|
|
18)Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 2012; 125: 795-9
|
|
|
19)Kondapalli C, Kazlauskaite A, Zhang N, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65. Open Biol. 2012; 2: 120080
|
|
|
20)Woodroof HI, Pogson JH, Begley M, et al. Discovery of catalytically active orthologues of the Parkinsons disease kinase PINK1: analysis of substrate specificity and impact of mutations. Open Biol. 2011; 1: 110012
|
|
|
21)Behrends C, Sowa ME, Gygi SP, et al. Network organization of the human autophagy system. Nature. 2010; 466: 68-76
|
|
|
22)Lipinski MM, Zheng B, Lu T, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimers disease. Proc Natl Acad Sci U S A. 2010; 107: 14164-9
|
|
|
23)Zatloukal K, Stumptner C, Fuchsbichler A, et al. p62 is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol. 2002; 160: 255-63
|
|
|