1)Graybiel AM. The basal ganglia. Curr Biol. 2000;10: R509-11
|
|
|
2)Wickens JR, Reynolds JNJ, Hyland BI. Neuralmechanisms of reward-related motor learning.Curr Opin Neurobiol. 2003; 13: 685-90
|
|
|
3)Redgrave P, Rodriguez M, Smith Y, et al. Goaldirectedand habitual control in the basalganglia: Implications for Parkinson's disease. NatRev Neurosci. 2010; 11: 760-72
|
|
|
4)Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: The role of reward-related learning and memory. Annu Rev Neurosci. 2006; 29: 565-98
|
|
|
5)Krishnan V, Nestler EJ. Linking molecules to mood: New insight into the biology of depres-sion. Am J Psychiatry. 2010; 167: 1305-20
|
|
|
6)Simpson EH, Kellendonk C, Kandel E. A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron. 2010; 65: 585-96
|
|
|
7)Kaneko S, Hikida T, Watanabe D, et al. Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. Science. 2000; 289: 633-7
|
|
|
8)Heiman M, Schaefer A, Gong S, et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell. 2008; 135: 738-48
|
|
|
9)Shen W, Flajolet M, Greengard P, et al. Dichotomous dopaminergic control of striatal synaptic plasticity. Science. 2008; 321: 848-51
|
|
|
10)Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. 2011; 34: 441-66
|
|
|
11)Kravitz AV, Freeze BS, Parker PRL, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010; 466: 622-6
|
|
|
12)Greengard P, Allen PB, Narin AC. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron. 1999; 23: 435-47
|
|
|
13)Nishi A, Kuroiwa M, Shuto T. Mechanisms for the modulation of dopamine D1 receptor signaling in striatal neurons. Front Neuroanat. 2011; 5: 43
|
|
|
14)Bateup HS, Santini E, Shen W, et al. Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci U S A. 2010; 107: 14845-50
|
|
|
15)Hikida T, Kimura K, Wada N, et al. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behav-ior. Neuron. 2010; 66: 896-907
|
|
|
16)Tzschenke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol. 2007; 12: 227-462
|
|
|
17)Kravitz AV, Tye LD, Kreitzer AC. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci. 2012; 15: 816-8
|
|
|
18)Paton JJ, Louie K. Reward and punishment illuminated. Nat Neurosci. 2012; 15: 807-9
|
|
|
19)Stuber GD, Britt JP, Bonci A. Optogenetic modulation of neural circuits that underlie reward seeking. Biol Psychiatry. 2012; 71: 1061-7
|
|
|
20)Di Chiara G, Imperato A. Drugs abused by humans preferentially increases synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988; 85: 5274-8
|
|
|
21)Lobo MK, Covington III HE, Chaudhury D, et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science. 2010; 330: 385-90
|
|
|
22)Lobo MK, Nestler EJ. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat. 2011; 5: 41
|
|
|
23)Kimura K, Hikida T, Yawata S, et al. Pathway-specific engagement of ephrinA5-EphA4/EphA5 system of the substantia nigra pars reticulata in cocaine-induced responses. Proc Natl Acad Sci U S A. 2011; 108: 9981-6
|
|
|