1)Aunders RN, Metcalfe MS, Nicholson ML. Rapamycin in transplantation: a review of the evidence. Kidney Int. 2001; 59: 3-16
|
|
|
2)Doyle RL, Hertz MI, Dunitz JM, et al. Rad in stable lung and heart/lung transplant recipients: safety, tolerability, pharmacokinetics, and impact of cystic fibrosis. J Heart Lung Transplant. 2001; 20: 330-9
|
|
|
3)Laplante MD, Sabatini M. mTOR signaling at a glance. J Cell Sci. 2009; 122: 3589-94
|
|
|
4)Rohde J, Heitman J, Cardenas ME. The TOR kinases link nutrient sensing to cell growth. J Biol Chem. 2001; 276: 9583-6
|
|
|
5)Neshat MS, Mellinghoff IK, Tran C, et al. Enhanced sensitivity of PTEN-deficient tumours to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A. 2001; 98: 10314-9
|
|
|
6)Yamagata K, Sanders LK, Kaufmann WE, et al. A growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem.1994; 269: 16333-9
|
|
|
7)Zhang Y, Gao X, Saucedo LJ, et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol. 2003; 5: 578-81
|
|
|
8)Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002; 4: 648-57
|
|
|
9)Beugnet A, Tee AR, Taylor PM, et al. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J. 2003; 372: 555-66
|
|
|
10)Cunningham JT, Rodgers JT, Arlow DH, et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature. 2007; 450: 736-40
|
|
|
11)Yu L, McPhee CK, Zheng L, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010; 465: 942-6
|
|
|
12)Yecies JL, Manning BD. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res. 2011; 71: 2815-20
|
|
|
13)Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell. 2010; 40: 310-22
|
|
|
14)Zinzalla V, Stracka D, Oppliger W, et al. Activation of mTORC2 by association with the ribosome. Cell. 2011; 144: 757-68
|
|
|
15)Chen CH, Shaikenov T, Peterson TR, et al. ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated phosphorylation of rictor. Sci Signal. 2011; 4: ra10
|
|
|
16)Garcia-Martinez JM, Alessi DR. mTOR complex 2(mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1(SGK1). Biochem J. 2008; 416: 375-85
|
|
|
17)Guertin DA, Stevens DM, Thoreen CC, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006; 11: 859-71
|
|
|
18)Delgoffe GM, Pollizzi KN, Waickman AT, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011; 12: 295-303
|
|
|
19)Lee K, Gudapati P, Dragovic S, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity. 2010; 32: 743-53
|
|
|
20)Rieder S, Michalski CW, Friess H, et al. Insulin-like growth factor signaling as a therapeutic target in pancreatic cancer. Anticancer Agents Med Chem. 2011; 11(5): 427-33
|
|
|
21)van Veelen W, Korsse SE, van de Laar L, et al. The long and winding road to rational treatment of cancer associated with LKB1/AMPK/TSC/mTORC1 signaling. Oncogene. 2011; 30(20): 2289-303
|
|
|
22)Ortells MC, Morancho B, Drews-Elger K, et al. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Res. 2012; 40(10): 4368-84
|
|
|
23)Lee K, Gudapati P, Dragovic S, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity. 2010; 32: 743-53
|
|
|
24)Takuwa N, Fukui Y, Takuwa Y. Cyclin D1 expression mediated by phosphatidylinositol 3-kinase through mTOR-p70(S6K)-independent signaling in growth factor-stimulated NIH 3T3 fibroblasts. Mol Cell Biol. 1999; 19(2): 1346-58
|
|
|
25)Pene F, Claessens YE, Muller O, et al. Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene. 2002; 21(43): 6587-97
|
|
|
26)Fingar DC, Richardson CJ, Tee AR, et al. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 2004; 24(1): 200-16
|
|
|
27)Otulakowski G, Duan W, O’Brodovich H. Global and gene-specific translational regulation in rat lung development. Am J Respir Cell Mol Biol. 2009; 40(5): 555-67
|
|
|
28)Kim JE, Chen J. Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes. 2004; 53: 2748-56
|
|
|
29)Phornphutkul C, Wu KY, Auyeung V, et al. mTOR signaling contributes to chondrocyte differentiation. Dev Dyn. 2008; 237(3): 702-12
|
|
|
30)Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006; 441(7092): 437-43
|
|
|
31)Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006; 441(7092): 424-30
|
|
|
32)Lum JJ, DeBerardinis RJ, Thompson CB. Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol. 2005; 6(6): 439-48
|
|
|
33)Vignot S, Faivre S, Aguirre D, et al. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005; 16(4): 525-37
|
|
|
34)Mamane Y, Petroulakis E, LeBacquer O, et al. mTOR, translation initiation and cancer. Oncogene. 2006; 25(48): 6416-22
|
|
|
35)Kim HP, Wang X, Chen ZH, et al. Autophagic proteins regulate cigarette smoke-induced apoptosis: protective role of heme oxygenase-1. Autophagy. 2008; 4: 887-95
|
|
|
36)Hwang JW, Chung S, Sundar IK, et al. Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism: implication in pathogenesis of COPD. Arch Biochem Biophys. 2010; 500: 203-9
|
|
|
37)Chen ZH, Kim HP, Sciurba FC, et al. EGR-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS ONE. 2008; 3: e3316
|
|
|
38)Chen ZH, Lam HC, Jin Y, et al. Autophagy protein microtubule-associated protein 1 light chain-3b(LC3B)activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci U S A. 2010; 107: 18880-5
|
|
|
39)Hodge S, Hodge G, Ahern J, et al. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2007; 37: 748-55
|
|
|
40)Doyle I, Ratcliffe M, Walding A, et al. Differential gene expression analysis in human monocyte-derived macrophages: impact of cigarette smoke on host defence. Mol Immunol. 2010; 47: 1058-65
|
|
|
41)Xu J, Xu F, Lin Y. Cigarette smoke synergizes lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α secretion from macrophages via substance P-mediated nuclear factor-κB activation. Am J Respir Cell Mol Biol. 2011; 44: 302-8
|
|
|
42)Monick MM, Powers LS, Walters K, et al. Identification of an autophagy defect in smokers’ alveolar macrophages. J Immunol. 2010; 185(9): 5425-35
|
|
|
43)Wu JJ, Quijano C, Chen E, et al. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging (Albany NY). 2009; 1: 425-37
|
|
|
44)Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011; 469: 221-5
|
|
|
45)Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011; 12: 222-30
|
|
|
46)Belikova I, Lukaszewicz AC, Faivre V, et al. Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis. Crit Care Med. 2007; 35: 2702-8
|
|
|
47)Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16l1 enhances endotoxin-induced IL-1β production. Nature. 2008; 456: 264-8
|
|
|
48)Tal MC, Sasai M, Lee HK, et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A. 2009; 106: 2770-5
|
|
|
49)Harris J, Hartman M, Roche C, et al. Autophagy controls IL-1β secretion by targeting pro-IL-1β for degradation. J Biol Chem. 2011; 286: 9587-97
|
|
|
50)Pyo JO, Nah J, Jung YK. Molecules and their functions in autophagy. Exp Mol Med. 2012; 29: 44(2): 73-80
|
|
|
51)Kelly J, Moss J. Lymphangioleiomyomatosis. Am J Med Sci. 2001; 321: 17-25
|
|
|
52)Johnson S. Lymphangioleiomyomatosis: clinical features, management and basic mechanisms. Thorax. 1999; 54: 254-64
|
|
|
53)Taylor JR, Ryu JH, Colby TV, et al. Lymphangioleiomyomatosis: clinical course in 32 patients. N Engl J Med. 1990; 323: 1254-60
|
|
|
54)Ryu JH, Moss J, Beck GJ, et al. The NHLBI lymphangioleiomyomatosis registry: characteristics of 230 patients at enrollment. Am J Respir Crit Care Med. 2006; 173(1): 105-11
|
|
|
55)Henske EP, Neumann HP, Scheithauer BW, et al. Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band 16p13 occurs in sporadic as well as TSC-associated renal angiomyolipomas. Genes Chromosomes Cancer. 1995; 13: 295-8
|
|
|
56)Strizheva GD, Carsillo T, Kruger WD, et al. The spectrum of mutations in TSC1 and TSC2 in women with tuberous sclerosis and lymphangiomyomatosis. Am J Respir Crit Care Med. 2001; 163: 253-8
|
|
|
57)Goncharova EA, Goncharov DA, Eszterhas A, et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis(LAM). J Biol Chem. 2002; 277(34): 30958-67
|
|
|
58)Lee L, Sudentas P, Donohue B, et al. Efficacy of a rapamycin analog (CCI-779) and IFN-gamma in tuberous sclerosis mouse models. Genes Chromosomes Cancer. 2005; 42(3): 213-27
|
|
|
59)Kwiatkowski DJ, Zhang H, Bandura JL, et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet. 2002; 11(5): 525-34
|
|
|
60)Alvarado Y, Mita MM, Vemulapalli S, et al. Clinical activity of mammalian target of rapamycin inhibitors in solid tumors. Target Oncol. 2011; 6(2): 69-94
|
|
|
61)Zoncu R, Efeyan A, Sabatini DM. MTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011; 12(1): 21-35
|
|
|
62)Wander SA, Hennessy BT, Slingerland JM, et al. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy J Clin Invest. 2011; 121(4): 1231-41
|
|
|
63)Hardt M, Chantaravisoot N, Tamanoi F, et al. Activating mutations of TOR (target of rapamycin). Genes Cells. 2011; 16(2): 141-51
|
|
|
64)Gulhati P, Cai Q, Li J, et al. Targeted inhibition of mammalian target of rapamycin signaling inhibits tumorigenesis of colorectal cancer. Clin Cancer Res. 2009; 15(23): 7207-16
|
|
|
65)Gulhati P, Bowen KA, Liu J, et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 2011; 71(9): 3246-56
|
|
|
66)Zhang F, Zhang X, Li M, et al. mTOR complex component Rictor interacts with PKCzeta and regulates cancer cell metastasis. Cancer Res. 2010; 70(22): 9360-70
|
|
|
67)Masri J, Bernath A, Martin J, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res. 2007; 67(24): 11712-20
|
|
|
68)Liu L, Luo Y, Chen L, et al. Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity. J Biol Chem. 2010; 285(49): 38362-73
|
|
|
69)Zhou H, Huang S. mTOR signaling in cancer cell motility and tumor metastasis. Crit Rev Eukaryot Gene Expr. 2010; 20(1): 1-16
|
|
|
70)Patel V, Marsh CA, Dorsam RT, et al. Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer. Cancer Res. 2011; 71(22): 7103-12
|
|
|
71)Motzer RJ, Escudier B, Oudard S, et al; RECORD-1 Study Group. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008; 372(9637): 449-56
|
|
|
72)O’Donnell A, Faivre S, Burris HA 3rd, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008; 26(10): 1588-95
|
|
|
73)Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007; 356: 2271-81
|
|
|
74)Pandya KJ, Dahlberg S, Hidalgo M, et al. A randomized, phase II trial of two dose levels of temsirolimus (CCI-779) in patients with extensive-stage small-cell lung cancer who have responding or stable disease after induction chemotherapy: a trial of the Eastern Cooperative Oncology Group(E1500). J Thorac Oncol. 2007; 2: 1036-41
|
|
|
75)Mita MM, Mita AC, Chu QS, et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 2008; 26(3): 361-7
|
|
|
76)Capdevila J, Salazar R, Halperin I, et al. Innovations therapy: mammalian target of rapamycin (mTOR) inhibitors for the treatment of neuroendocrine tumors. Cancer Metastasis Rev. 2011; 30 Suppl 1: 27-34
|
|
|
77)Li J, Liu J, Song J, et al. mTORC1 inhibition increases neurotensin secretion and gene expression through activation of the MEK/ERK/c-Jun pathway in the human endocrine cell line BON. Am J Physiol Cell Physiol. 2011; 301(1): C213-26
|
|
|