1)Hamblin TJ, Davis Z, Gardiner A, et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999; 94(6): 1848-54
|
|
|
2)Rosenwald A, Alizadeh AA, Widhopf G, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001; 194(11): 1639-47
|
|
|
3)Klein U, Tu Y, Stolovitzky GA, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001; 194(11): 1625-38
|
|
|
4)Fais F, Ghiotto F, Hashimoto S, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest. 1998; 102(8): 1515-25
|
|
|
5)Ghiotto F, Fais F, Valetto A, et al. Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J Clin Invest. 2004; 113(7): 1008-16
|
|
|
6)Tobin G, Thunberg U, Johnson A, et al. Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood. 2003; 101(12): 4952-7
|
|
|
7)Messmer BT, Albesiano E, Efremov DG, et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med. 2004; 200(4): 519-25
|
|
|
8)Tobin G, Thunberg U, Karlsson K, et al. Subsets with restricted immunoglobulin gene rearrange-ment features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood. 2004; 104(9): 2879-85
|
|
|
9)Widhopf GF, 2nd, Rassenti LZ, Toy TL, et al. Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood. 2004; 104(8): 2499-504
|
|
|
10)Stamatopoulos K, Belessi C, Moreno C, et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Patho-genetic implications and clinical correlations. Blood. 2007; 109(1): 259-70
|
|
|
11)Messmer BT, Raphael BJ, Aerni SJ, et al. Computational identification of CDR3 sequence archetypes among immunoglobulin sequences in chronic lymphocytic leukemia. Leuk Res. 2009; 33(3): 368-76
|
|
|
12)Marti GE, Rawstron AC, Ghia P, et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol. 2005; 130(3): 325-32
|
|
|
13)Dagklis A, Fazi C, Scarfo L, et al. Monoclonal B lymphocytosis in the general population. Leuk Lymphoma. 2009; 50(3): 490-2
|
|
|
14)Ghia P, Caligaris-Cappio F. Monoclonal B-cell lymphocytosis: right track or red herring? Blood. 2012; 119(19): 4358-62
|
|
|
15)Ghia P, Prato G, Scielzo C, et al. Monoclonal CD5+ and CD5- B-lymphocyte expansions are frequent in the peripheral blood of the elderly. Blood. 2004; 103(6): 2337-42
|
|
|
16)Rawstron AC, Bennett FL, OConnor SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008; 359(6): 575-83
|
|
|
17)Landgren O, Albitar M, Ma W, et al. B-cell clones as early markers for chronic lymphocytic leukemia. N Engl J Med. 2009; 360(7): 659-67
|
|
|
18)Lanasa MC, Allgood SD, Volkheimer AD, et al. Single-cell analysis reveals oligoclonality among ʻlow-count monoclonal B-cell lymphocytosis. Leukemia. 2010; 24(1): 133-40
|
|
|
19)Nieto WG, Almeida J, Romero A, et al. Increased frequency (12%) of circulating CLL-like B-cell clones in healthy individuals using a high-sensitive multicolor flow cytometry approach. Blood. 2009; 114(1): 33-7
|
|
|
20)Sanchez ML, Almeida J, Gonzalez D, et al. Incidence and clinicobiologic characteristics of leukemic B-cell chronic lymphoproliferative disorders with more than one B-cell clone. Blood. 2003; 102(8): 2994-3002
|
|
|
21)Ishikawa F, Yasukawa M, Lyons B, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain (null) mice. Blood. 2005; 106(5): 1565-73
|
|
|
22)Pearson T, Shultz LD, Miller D, et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaemato-poietic engraftment. Clin Exp Immunol. 2008; 154(2): 270-84
|
|
|
23)Shanafelt TD, Witzig TE, Fink SR, et al. Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J Clin Oncol. 2006; 24(28): 4634-41
|
|
|
24)Kikushige Y, Ishikawa F, Miyamoto T, et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011; 20(2): 246-59
|
|
|
25)Quivoron C, Couronne L, Della Valle V, et al. TET2 inactivation results in pleiotropic hemato-poietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 2011; 20(1): 25-38
|
|
|