1)Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005; 434: 843-50
|
|
|
2)Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011; 377: 1276-87
|
|
|
3)Boonen RA, van Tijn P, Zivkovic D. Wnt signaling in Alzheimers disease: up or down, that is the question. Ageing Res Rev. 2009; 8: 71-82
|
|
|
4)MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental Cell. 2009; 17: 9-26
|
|
|
5)Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009; 10: 468-77
|
|
|
6)Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004; 20: 781-810
|
|
|
7)Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006; 127: 469-80
|
|
|
8)Zhou W, Lin L, Majumdar A, et al. Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family-mediated trans-criptional activation of TGFbeta2. Nat Genet. 2007; 39: 1225-34
|
|
|
9)Laumanns IP, Fink L, Wilhelm J, et al. The noncanonical WNT pathway is operative in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2009; 40: 683-91
|
|
|
10)Haq S, Michael A, Andreucci M, et al. Stabilization of beta-catenin by a Wnt-indepen-dent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci U S A. 2003; 100: 4610-5
|
|
|
11)Chen X, Shevtsov SP, Hsich E, et al. The beta-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. Mol Cell Biol. 2006; 26: 4462-73
|
|
|
12)Qu J, Zhou J, Yi XP, et al. Cardiac-specific haploinsufficiency of beta-catenin attenuates cardiac hypertrophy but enhances fetal gene expression in response to aortic constriction. J Mol Cell Cardiol. 2007; 43: 319-26
|
|
|
13)van de Schans VA, van den Borne SW, Strzelecka AE, et al. Interruption of Wnt signaling attenuates the onset of pressure overload-induced cardiac hypertrophy. Hypertension. 2007; 49: 473-80
|
|
|
14)Dajani R, Fraser E, Roe SM, et al. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 2001; 105: 721-32
|
|
|
15)Frame S, Cohen P, Biondi RM. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell. 2001; 7: 1321-7
|
|
|
16)ter Haar E, Coll JT, Austen DA, et al. Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol. 2001; 8: 593-6
|
|
|
17)Taelman VF, Dobrowolski R, Plouhinec JL, et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endo-somes. Cell. 2010; 143: 1136-48
|
|
|
18)Baurand A, Zelarayan L, Betney R, et al. Beta-catenin downregulation is required for adaptive cardiac remodeling. Circ Res. 2007; 100: 1353-62
|
|
|
19)Wu X, Golden K, Bodmer R. Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol. 1995; 169: 619-28
|
|
|
20)Marvin MJ, Di Rocco G, Gardiner A, et al. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev. 2001; 15: 316-27
|
|
|
21)Schneider VA, Mercola M. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev. 2001; 15: 304-15
|
|
|
22)Tzahor E, Lassar AB. Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev. 2001; 15: 255-60
|
|
|
23)Naito AT, Shiojima I, Akazawa H, et al. Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci U S A. 2006; 103: 19812-7
|
|
|
24)Ai D, Fu X, Wang J, et al. Canonical Wnt signaling functions in second heart field to promote right ventricular growth. Proc Natl Acad Sci U S A. 2007; 104: 9319-24
|
|
|
25)Cohen ED, Wang Z, Lepore JJ, et al. Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regula-tion of FGF signaling. J Clinl Invest. 2007; 117: 1794-804
|
|
|
26)Klaus A, Saga Y, Taketo MM, et al. Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis. Proc Natl Acad Sci U S A. 2007; 104: 18531-6
|
|
|
27)Kwon C, Arnold J, Hsiao EC, et al. Canonical Wnt signaling is a positive regulator of mam-malian cardiac progenitors. Proc Natl Acad Sci U S A. 2007; 104: 10894-9
|
|
|
28)Lin L, Cui L, Zhou W, et al. Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci U S A. 2007; 104: 9313-8
|
|
|
29)Qyang Y, Martin-Puig S, Chiravuri M, et al. The renewal and differentiation of Isl1+ cardiovas-cular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell. 2007; 1: 165-79
|
|
|
30)Ueno S, Weidinger G, Osugi T, et al. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A. 2007; 104: 9685-90
|
|
|
31)Matsuura K, Nagai T, Nishigaki N, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem. 2004; 279: 11384-91
|
|
|
32)Oh H, Chi X, Bradfute SB, et al. Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann N Y Acad Sci. 2004; 1015: 182-9
|
|
|
33)Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003; 114: 763-76
|
|
|
34)Moretti A, Caron L, Nakano A, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversifica-tion. Cell. 2006; 127: 1151-65
|
|
|
35)Oyama T, Nagai T, Wada H, et al. Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol. 2007; 176: 329-41
|
|
|
36)Zelarayan LC, Noack C, Sekkali B, et al. Beta-Catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation. Proc Natl Acad Sci U S A. 2008; 105: 19762-7
|
|
|
37)Noack C, Zafiriou MP, Schaeffer HJ, et al. Krueppel-like factor 15 regulates Wnt/beta-catenin transcription and controls cardiac progenitor cell fate in the postnatal heart. EMBO Mol Med. 2012; 4: 992-1007
|
|
|
38)Bailey B, Fransioli J, Gude NA, et al. Sca-1 knockout impairs myocardial and cardiac progenitor cell function. Circ Res. 2012; 111: 750-60
|
|
|
39)Barandon L, Couffinhal T, Ezan J, et al. Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpres-sing FrzA. Circulation. 2003; 108: 2282-9
|
|
|
40)Laeremans H, Hackeng TM, van Zandvoort MA, et al. Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation. 2011; 124: 1626-35
|
|
|
41)Hahn JY, Cho HJ, Bae JW, et al. Beta-catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts. J Biol Chem. 2006; 281: 30979-89
|
|
|
42)Laeremans H, Rensen SS, Ottenheijm HC, et al. Wnt/frizzled signalling modulates the migration and differentiation of immortalized cardiac fibroblasts. Cardiovasc Res. 2010; 87: 514-23
|
|
|
43)Colston JT, de la Rosa SD, Koehler M, et al. Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. Am J Physiol Heart Circ Physiol. 2007; 293: H1839-46
|
|
|
44)Duan J, Gherghe C, Liu D, et al. Wnt1/beta-catenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J. 2012; 31: 429-42
|
|
|
45)Naito AT, Sumida T, Nomura S, et al. Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell. 2012; 149: 1298-313
|
|
|
46)Brack AS, Conboy MJ, Roy S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007; 317: 807-10
|
|
|
47)Liu H, Fergusson MM, Castilho RM, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007; 317: 803-6
|
|
|