1)Chien KR, Domian IJ, Parker KK. Cardiogenesis and the complex biology of regenerative cardio-vascular medicine. Science. 2008; 322: 1494-97
|
|
|
2)Ratajska A, Czarnowska E, Ciszek B. Embryonic development of the proepicardium and coronary vessels. Int J Dev Biol. 2008; 52: 229-36
|
|
|
3)Gittenberger-de Groot AC, Vrancken Peeters MP, Bergwerff M, et al. Epicardial outgrowth inhibi-tion leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res. 2000; 87: 969-71
|
|
|
4)Sengbusch JK, He W, Pinco KA, et al. Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol. 2002; 157: 873-82
|
|
|
5)Morabito CJ, Dettman RW, Kattan J, et al. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol. 2001; 234: 204-15
|
|
|
6)Lie-Venema H, van den Akker NM, Bax NA, et al. Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Scientific World Journal. 2007; 7: 1777-98
|
|
|
7)Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 1996; 174: 221-32
|
|
|
8)Wessels A, Perez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004; 276: 43-57
|
|
|
9)Merki E, Zamora M, Raya A, et al. Epicardial retinoid X receptor alpha is required for myo-cardial growth and coronary artery formation. Proc Natl Acad Sci U S A. 2005; 102: 18455-60
|
|
|
10)Zhou B, Ma Q, Rajagopal S, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008; 454: 109-13
|
|
|
11)Cai CL, Martin JC, Sun Y. et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008; 454: 104-8
|
|
|
12)Christoffels VM, Grieskamp T, Norden J, et al. Tbx18 and the fate of epicardial progenitors. Nature. 2009; 458: E8-9
|
|
|
13)Wijk B, van den Berg G, Abu-Issa R, et al. Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein- and fibroblast growth factor signaling pathways. Circ Res. 2009; 105: 431-41
|
|
|
14)Meilhac SM, Esner M, Kelly RG, et al. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell. 2004; 6: 685-98
|
|
|
15)Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell. 2006; 127: 1137-50
|
|
|
16)Moretti A, Caron L, Nakano A, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diver-sification. Cell. 2006; 127: 1151-65
|
|
|
17)Christoforou N, Miller RA, Hill CM, et al. Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes. J Clin Invest. 2008; 118: 894-903
|
|
|
18)Tallini YN, Greene KS, Craven M, et al. c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A. 2009; 106: 1808-13
|
|
|
19)Zhou B, Gise Av, Ma Q, et al. Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun. 2008; 375: 450-3
|
|
|
20)Flink IL. Cell cycle reentry of ventricular and atrial cardiomyocytes and cells within the epicardium following amputation of the ventricular apex in the axolotl, Amblystoma mexicanum: confocal microscopic immuno-fluorescent image analysis of bromodeoxyuridine-labeled nuclei. Anat Embryol (Berl). 2002; 205: 235-44
|
|
|
21)Lepilina A, Coon AN, Kikuchi K, et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006; 127: 607-19
|
|
|
22)Jopling C, Sleep E, Raya M, et al. Zebrafish heart regeneration occurs by cardiomyocyte dediffer-entiation and proliferation. Nature. 2010; 464: 606-9
|
|
|
23)Kikuchi K, Holdway JE, Werdich AA, et al. Primary contribution to zebrafish heart regen-eration by gata4(+) cardiomyocytes. Nature. 2010; 464: 601-5
|
|
|
24)van Tuyn J, Atsma DE, Winter EM, et al. Epicardial cells of human adults can undergo an epithelial-to mesenchymal transition and obtain characte ristics of smooth muscle cells in vitro. Stem Cells. 2006; 25: 271-8
|
|
|
25)Winter EM, Grauss RW, Hogers B, et al. Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation. 2007; 116: 917-27
|
|
|
26)Winter EM, van Oorschot AA, Hogers B, et al. A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Circ Heart Fail. 2009; 2: 643-53
|
|
|
27)Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003; 114: 763-76
|
|
|
28)Limana F, Zacheo A, Mocini D, et al. Identi-fication of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res. 2007; 101: 1255-65
|
|
|
29)Limana F, Bertolami C, Mangoni A, et al. Myocardial infarction induces embryonic repro-gramming of epicardial c-kit(+)cells: role of the pericardial fluid. J Mol Cell Cardiol. 2009; 48: 609-18
|
|
|
30)Castaldo C, Di Meglio F, Nurzynska D, et al. CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with laminin-1 and alpha6 integrin expression. Stem Cells. 2008; 26: 1723-31
|
|
|
31)Bock-Marquette I, Saxena A, White MD, et al. Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature. 2004; 432: 466-72
|
|
|
32)Smart N, Risebro CA, Melville AA, et al. Thymosin beta4 induces adult epicardial progen-itor mobilization and neovascularization. Nature. 2007; 445; 177-82
|
|
|
33)Smart N, Bollini S, Dube KN, et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011; 474: 640-4
|
|
|
34)Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010; 142: 375-86
|
|
|
35)Zhou B, Honor LB, Ma Q, et al. Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J Mol Cell Cardiol. 2012; 52: 43-7
|
|
|
36)Limana F, Capogrossi MC, Germani A. The epicardium in cardiac repair: from the stem cel
|
|
|