1)Krafft C. Vibrational spectroscopic imaging of soft tissue. In: Salzer R, et al. editors. Infrared and Raman spectroscopic imaging. Weinheim: Wiley-VCH; 2009. p. 113-47
|
|
|
2)Pounder FN, Bhargava. Toward automated brest histophathology using Mid-IR spectroscopic imaging. In: Srinivasan G, editors. Vibrational spectroscopic imaging for biomedical applications. New York: McGraw-Hill; 2010. p. 1-28
|
|
|
3)尾崎幸洋, 岩橋秀夫. 赤外分光法. In: 生体分子分光学入門. 東京: 共立出版; 1992. p. 56-111
|
|
|
4)矢野一行, 若松英男. 第5章赤外・近赤外分光法の臨床検査への応用, 第6章赤外・近赤外分光法の臨床医学への応用. In: 赤外・近赤外分光法の臨床医学への応用 新しい診断技術を目指して. 東京: 真興交易医書出版部; 2008. p. 37-123
|
|
|
5)橋本 守. 赤外・ラマン顕微分光法. In: (社)日本分光学会. 分光測定入門シリーズ10 顕微分光法 ナノ・マイクロの世界を見る分光法. 東京: 講談社サイエンティフィック; 2009. p. 55-76
|
|
|
6)Griffiths PR. Infrared and raman instrumentation for mapping and imaging. In: Salzer R, et al. editors. Infrared and Raman spectroscopic imaging. Weinheim: Wiley-VCH; 2009. p. 3-64
|
|
|
7)古川行夫, 高橋正夫. 赤外分光法. In: 日本分光学会. 分光測定入門シリーズ6 赤外・ラマン分光法. 東京: 講談社サイエンティフィック; 2009. p. 1-68
|
|
|
8)高柳正夫. 近赤外分光法. In: 日本分光学会. 分光測定入門シリーズ6 赤外・ラマン分光法. 東京: 講談社サイエンティフィック; 2009. p. 121-87
|
|
|
9)古川行夫. ラマン分光法. In: 日本分光学会. 分光測定入門シリーズ6 赤外・ラマン分光法. 東京: 講談社サイエンティフィック; 2009. p. 69-120
|
|
|
10)Kimura-Suda H, Kajiwara M, Matsumoto N, et al. Characterization of apatite and collagen in bone with FTIR imaging. Mol Cryst Liq Cryst. 2009; 505: 64-9
|
|
|
11)木村-須田廣美, 大和英之. 赤外イメージングと顕微ラマン分光を用いた骨の分析. 腎と骨代謝. 2009; 22: 207-14
|
|
|
12)Nelson MP, Treado PJ. Raman imaging instrumentation. In: Sasic S, et al. editors. Raman, infrared, and near-infrared chemical imaging. New Jersey: Wiely; 2010. p. 23-54
|
|
|
13)Sholkina M, Puppels GJ, Schut TCB. The Current state of Raman imaging in clinical application. In: Srinvasan G, editors. Vibrational spectroscopic imaging for biomedical applications. McGrawHill; 2010. p. 265-97
|
|
|
14)Evan AP, Lingeman JE, Coe FL, et al. Randall's plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest. 2003; 111: 607-16
|
|
|
15)Dessombz A, Bazin D, Dumas P, et al. Shedding light on the chemical diversity of ectopic calcifications in kidney tissues: diagnostic and research aspects. PLoS One. 2011; 6: e28007
|
|
|
16)Gulley-Stahl HJ, Bledsoe SB, Evan AP, et al. The advantages of an attenuated total internal reflection infrared microspectroscopic imaging approach for kidney biopsy analysis. Appl Spectrosc. 2010; 64: 15-22
|
|
|
17)木村-須田廣美, 桑原三恵子, 大和英之. 振動分光法による慢性腎臓病ラットのミネラル代謝の解析. 第61回高分子学会年次大会要旨. 2012; 61: 1897
|
|
|
18)木村-須田廣美, 日高公介, 桑原三恵子. 末期腎臓病におけるミネラル代謝と心疾患の振動分光学的検討:赤外イメージングとラマン分光による解析. 第55回日本腎臓学会学術総会. 2012; 54: 246
|
|
|
19)Kimura-Suda H, Kuwahara M, Hidaka K, et al. Analysis of bone in rats of end stage kidney disease by vibrational spectroscopy. Mol Cryst Liq Cryst. 2012; 566: 75-9
|
|
|
20)Rohleder D, Kocherscheidt G, Gerber K, et al. Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum. J Biomed Opt. 2005; 10: 031108-10
|
|
|
21)Enejder AMK, Koo TW, Oh J, et al. Blood analysis by Raman spectroscopy. Opt Lett. 2002; 27: 2004-6
|
|
|
22)Caspers PJ, Lucassen GW, Puppels GJ. Combined In vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys J. 2003; 85: 572-80
|
|
|
23)Canetta E, Mazilu M, Luca AD, et al. Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples. J Biomed Opt. 2011; 16: 037002-7
|
|
|
24)Kamemoto L, Misra AK, Sharma SK, et al. Near-infrared micro-Raman spectroscopy for in vitro detection of cervical cancer. Appl Spectrosc. 2010; 64: 255-61
|
|
|
25)Maier J, Panza J, Drauch A, et al. Raman molecular imaging of tissue and cell samples using tunable multiconjugate filter. Proc SPIE. 2006; 6380: 638009-12
|
|
|
26)Arif B, Ashraf JM, Moinuddin, et al. Structural and immunological characterization of Amadori-rich human serum albumin: Role in diabetes mellitus. Arch Biochem Biophys. 2012; 522: 17-25
|
|
|
27)Tupe R, Agte V. Interaction of zinc, ascorbic acid, and folic acid in glycation with albumin as protein model. Biol Trace Elem Res. 2010; 138: 346-57
|
|
|
28)Ahmad S, Moinuddin, Khan RH, et al. Physicochemical studies on glycation-induced structural changes in human IgG. IUBMB Life. 2012; 64: 151-6
|
|
|
29)Roy R, Boskey A, Bonassar LJ. Processing of type I collagen gels using nonenzymatic glycation. J Biomed Mater Res A. 2010; 93: 843-51
|
|
|
30)Viguet-Carrin S, Farlay D, Bala Y, et al. An in vitro model to test the contribution of advanced glycation end products to bone biomechanical properties. Bone. 2008; 42: 139-49
|
|
|
31)Beattie JR, Pawlak AM, McGarvey JJ, et al. Sclera as a surrogate marker for determining AGE-modifications in Bruch’s membrane using a Raman spectroscopy-based index of aging. Invest Ophthalmol Vis Sci. 2011; 52: 1593-8
|
|
|
32)Iwasaki Y, Kazama JJ, Yamato H, et al. Changes in chemical composition of cortical bone associated with bone fragility in rat model with chronic kidney disease. Bone. 2011; 48: 1260-7
|
|
|
33)Pawlak AM, Beattie JR, Glenn JV, et al. Raman spectroscopy of advanced glycation end products (AGEs), possible markers for progressive retinal dysfunction. J Raman Spectrosc. 2008; 39: 1635-42
|
|
|
34)Taleb A, Diamond J, McGarvey J, et al. Raman microscopy for the chemometric analysis of tumor cells. J Phys Chem B. 2006; 110: 19625-31
|
|
|