医中誌リンクサービス


文献リスト

1)Simon DB, Nelson-Williams C, Bia MJ, et al. Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet. 1996; 12: 24-30
PubMed CrossRef
医中誌リンクサービス
2)Bettinelli A, Bianchetti MG, Girardin E, et al. Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: Bartter and Gitelman syndromes. J Pediatr. 1992; 120: 38-43
PubMed CrossRef
医中誌リンクサービス
3)Lin SH, Cheng NL, Hsu YJ, et al. Intrafamilial phenotype variability in patients with Gitelman syndrome having the same mutations in their thiazide-sensitive sodium/chloride cotransporter. Am J Kidney Dis. 2004; 43: 304-12
PubMed CrossRef
医中誌リンクサービス
4)Lin SH, Shiang JC, Huang CC, et al. Phenotype and genotype analysis in Chinese patients with Gitelman’s syndrome. J Clin Endocrinol Metab. 2005; 90: 2500-7
PubMed CrossRef
医中誌リンクサービス
5)Favre GA, Nau V, Kolb I, et al. Localization of tubular adaptation to renal sodium loss in Gitelman syndrome. Clin J Am Soc Nephrol. 2012; 7: 472-8
PubMed CrossRef
医中誌リンクサービス
6)Nijenhuis T, Vallon V, van der Kemp AW, et al. Enhanced passive Ca2+reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest. 2005; 115: 1651-8
PubMed CrossRef
医中誌リンクサービス
7)Reilly RF, Huang CL. The mechanism of hypocalciuria with NaCl cotransporter inhibition. Nat Rev Nephrol. 2011; 7: 669-74
PubMed CrossRef
医中誌リンクサービス
8)Bockenhauer D, Feather S, Stanescu HC, et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med. 2009; 360: 1960-70
PubMed CrossRef
医中誌リンクサービス
9)Scholl UI, Choi M, Liu T, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A. 2009; 106: 5842-7
PubMed CrossRef
医中誌リンクサービス
10)Seyberth HW, Schlingmann KP. Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects. Pediatr Nephrol. 2011; 26: 1789-802
PubMed CrossRef
医中誌リンクサービス
11)Simon DB, Bindra RS, Mansfield TA, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet. 1997; 17: 171-8
PubMed CrossRef
医中誌リンクサービス
12)Bianchetti MG, Edefonti A, Bettinelli A. The biochemical diagnosis of Gitelman disease and the definition of “hypocalciuria”. Pediatr Nephrol. 2003; 18: 409-11
PubMed
医中誌リンクサービス
13)Nozu K, Fu XJ, Nakanishi K, et al. Molecular analysis of patients with type III Bartter syndrome: picking up large heterozygous deletions with semiquantitative PCR. Pediatr Res. 2007; 62: 364-9
PubMed CrossRef
医中誌リンクサービス
14)Nozu K, Iijima K, Kanda K, et al. The pharmacological characteristics of molecular-based inherited salt-losing tubulopathies. J Clin Endocrinol Metab. 2010; 95: E511-8
PubMed CrossRef
医中誌リンクサービス
15)Peters M, Jeck N, Reinalter S, et al. Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies. Am J Med. 2002; 112: 183-90
PubMed CrossRef
医中誌リンクサービス
16)Colussi G, Bettinelli A, Tedeschi S, et al. A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin J Am Soc Nephrol. 2007; 2: 454-60
PubMed CrossRef
医中誌リンクサービス
17)Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002; 417: 447-52
PubMed
医中誌リンクサービス
18)Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008; 283: 26834-8
PubMed CrossRef
医中誌リンクサービス
19)Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008; 83: 744-51
CrossRef
医中誌リンクサービス
20)Shima Y, Nozu K, Nozu Y, et al. Recurrent EIARF and PRES with severe renal hypouricemia by compound heterozygous SLC2A9 mutation. Pediatrics. 2011; 127: e1621-5
PubMed CrossRef
医中誌リンクサービス
21)Dinour D, Gray NK, Campbell S, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol. 2010; 21: 64-72
PubMed CrossRef
医中誌リンクサービス
22)Dinour D, Gray NK, Ganon L, et al. Two novel homozygous SLC2A9 mutations cause renal hypouricemia type 2. Nephrol Dial Transplant. 2012; 27: 1035-41
PubMed CrossRef
医中誌リンクサービス
23)Kawamura Y, Matsuo H, Chiba T, et al. Pathogenic GLUT9 mutations causing renal hypouricemia type 2 (RHUC2). Nucleosides Nucleotides Nucleic Acids. 2011; 30: 1105-11
PubMed CrossRef
医中誌リンクサービス
24)Stiburkova B, Ichida K, Sebesta I. Novel homozygous insertion in SLC2A9 gene caused renal hypouricemia. Mol Genet Metab. 2011; 102: 430-5
PubMed CrossRef
医中誌リンクサービス
25)Stiburkova B, Taylor J, Marinaki AM, et al. Acute kidney injury in two children caused by renal hypouricaemia type 2. Pediatr Nephrol. 2012; 27: 1411-5
PubMed CrossRef
医中誌リンクサービス
26)Hoopes RR Jr, Shrimpton AE, Knohl SJ, et al. Dent disease with mutations in OCRL1. Am J Hum Genet. 2005; 76: 260-7
PubMed CrossRef
医中誌リンクサービス
27)Sekine T, Nozu K, Iyengar R, et al. OCRL1 mutations in patients with Dent disease phenotype in Japan. Pediatr Nephrol. 2007; 22: 975-80
PubMed CrossRef
医中誌リンクサービス
28)Shrimpton AE, Hoopes RR Jr, Knohl SJ, et al. OCRL1 mutations in Dent 2 patients suggest a mechanism for phenotypic variability. Nephron Physiol. 2009; 112: 27-36
医中誌リンクサービス
29)Hichri H, Rendu J, Monnier N, et al. From Lowe syndrome to Dent disease: correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes. Hum Mutat. 2011; 32: 379-88
PubMed CrossRef
医中誌リンクサービス
30)Bokenkamp A, Bockenhauer D, Cheong HI, et al. Dent-2 disease: a mild variant of Lowe syndrome. J Pediatr. 2009; 155: 94-9
PubMed CrossRef
医中誌リンクサービス
31)Thebault S, Alexander RT, Tiel Groenestege WM, et al. EGF increases TRPM6 activity and surface expression. J Am Soc Nephrol. 2009; 20: 78-85
PubMed CrossRef
医中誌リンクサービス
32)Hou J, Renigunta A, Gomes AS, et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A. 2009; 106: 15350-5
PubMed CrossRef
医中誌リンクサービス
33)Godron A, Harambat J, Boccio V, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin J Am Soc Nephrol. 2012; 7: 801-9
PubMed CrossRef
医中誌リンクサービス
34)Adalat S, Woolf AS, Johnstone KA, et al. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol. 2009; 20: 1123-31
PubMed CrossRef
医中誌リンクサービス
35)Glaudemans B, van der Wijst J, Scola RH, et al. A missense mutation in the Kv1. 1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest. 2009; 119: 936-42
PubMed CrossRef
医中誌リンクサービス
36)Stuiver M, Lainez S, Will C, et al. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am J Hum Genet. 2011; 88: 333-43
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp