1) Yamada K, Nakata M, Horimoto N, et al. Measurement of glucose uptake and intracellular calcium concentration in single, living pancreatic beta-cells. J Biol Chem. 2000; 275: 22278-83
|
|
|
2) Kuznetsov A, Bindokas VP, Marks JD, et al. FRET-based voltage probes for confocal imaging: membrane potential oscillations throughout pancreatic islets. Am J Physiol Cell Physiol. 2005; 289: C224-9
|
|
|
3) Grapengiesser E, Gylfe E, Hellman B. Glucose-induced oscillations of cytoplasmic Ca2+ in the pancreatic beta-cells. Biochem Biophys Res Commun. 1988; 151: 1299-304
|
|
|
4) Ohara-Imaizumi M, Nishiwaki C, Kikuta T, et al. TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behavior of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells. Biochem J. 2004; 381: 13-8
|
|
|
5) Imamura H, Nhat KP, Togawa H, et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A. 2009; 106: 15651-6
|
|
|
6) Takahashi N, Hatakeyama H, Okado H, et al. SNARE conformational changes that prepare vesicles for exocytosis. Cell Metab. 2010; 12: 19-29
|
|
|
7) Ohara-Imaizumi M, Aoyagi K, Nakamichi Y, et al. Pattern of rise in subplasma membrane Ca2+ concentration determines type of fusing insulin granules in pancreatic beta cells. Biochem Biophys Res Commun. 2009; 385: 291-5
|
|
|
8) Sako Y, Grill VE. A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B cell oxidation through a process likely coupled to fatty acid oxidation. Endocrinology. 1990; 127: 1580-9
|
|
|
9) Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003; 422: 173-6
|
|
|
10) MacDonald PE, El-Kholy W, Riedel MJ, et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002; 51 Suppl 3: S434-42
|
|
|
11) Gromada J, Brock B, Schmitz O, et al. Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential. Basic Clin Pharmacol Toxicol. 2004; 95: 252-62
|
|
|
12) Söllner T, Whiteheart SW, Brunner M, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993; 362: 318-24
|
|
|
13) Sutton RB, Fasshauer D, Jahn R, et al. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2. 4 A resolution. Nature. 1998; 395: 347-53
|
|
|
14) Stout AL, Axelrod D. Evanescent field excitation of fluorescence by epi-illumination microscopy. Appl Opt. 1989; 28: 5237-42
|
|
|
15) Straub SG, Shanmugam G, Sharp GW. Stimula-tion of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets. Diabetes. 2004; 53: 3179-83
|
|
|
16) Ohara-Imaizumi M, Nishiwaki C, Kikuta T, et al. TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells. Biochem J. 2004; 381: 13-8
|
|
|
17) Ohara-Imaizumi M, Fujiwara T, Nakamichi Y, et al. Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol. 2007; 177: 695-705
|
|
|
18) Rohrbach A. Observing secretory granules with a multiangle evanescent wave microscope. Biophys J. 2000; 78: 2641-54
|
|
|
19) Nunoi K, Yasuda K, Tanaka H, et al. Wortmannin, a PI3-kinase inhibitor: promoting effect on insulin secretion from pancreatic beta cells through a cAMP-dependent pathway. Biochem Biophys Res Commun. 2000; 270: 798-805
|
|
|
20) Sekar RB, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol. 2003; 160: 629-33
|
|
|
21) Xia Z, Zhou Q, Lin J, et al. Stable SNARE complex prior to evoked synaptic vesicle fusion revealed by fluorescence resonance energy transfer. J Biol Chem. 2001; 276: 1766-71
|
|
|
22) Medine CN, Rickman C, Chamberlain LH, et al. Munc18-1 prevents the formation of ectopic SNARE complexes in living cells. J Cell Sci. 2007; 120: 4407-15
|
|
|
23) An SJ, Almers W. Tracking SNARE complex formation in living endocrine cells. Science. 2004; 306: 1042-6
|
|
|
24) Wang L, Bittner MA, Axelrod D, et al. The structural and functional implications of linked SNARE motifs in SNAP25. Mol Biol Chem. 2008; 19: 3944-55
|
|
|
25) Choi UB, Strop P, Vrljic M, et al. Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat Struct Mol Biol. 2010; 17: 318-24
|
|
|
26) Li Y, Augustine GJ, Weninger K. Kinetics of complexin binding to the SNARE complex: correcting single molecule FRET measurements for hidden events. Biophys J. 2007; 93: 2178-87
|
|
|
27) Krishnakumar SS, Radoff DT, Kümmel D, et al. A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nat Struct Mol Biol. 2011; 18: 934-40
|
|
|
28) Gauthier BR, Wollheim CB. Synaptotagmins bind calcium to release insulin. Am J Physiol Endocrinol Metab. 2008; 295: E1279-86
|
|
|
29) Abderrahmani A, Niederhauser G, Plaisance V, et al. Complexin I regulates glucose-induced secretion in pancreatic beta-cells. J Cell Sci. 2004; 117: 2239-47
|
|
|
30) Takahashi N, Kishimoto T, Nemoto T, et al. Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science. 2002; 297: 1349-52
|
|
|
31) Kennedy HJ, Pouli AE, Ainscow EK, et al. Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem. 1999; 274: 13281-91
|
|
|
32) Imamura H, Nhat KP, Togawa H, et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A. 2009; 106: 15651-6
|
|
|