1) McCay CM, Crowell MF, Maynard LA. The effect of restricted growth upon the length of life span and upon the ultimate body size. Nutrition. 1935; 5: 155-71
|
|
|
2) Fontana L, Klein S. Aging, adiposity, and calorie restriction. JAMA. 2007; 297: 986-94
|
|
|
3) Anderson RM, Shanmuganayagam D, Weindruch R. Caloric restriction and aging: studies in mice and monkeys. Toxicol Pathol. 2009; 37: 47-51
|
|
|
4) Mattson MP, Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005; 16: 129-37
|
|
|
5) Martin B, Mattson MP, Maudsley S. Caloric restriction and intermittent fasting: two potential diet for successful brain aging. Ageing Res Rev. 2006; 5: 332-5
|
|
|
6) Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000; 403: 795-800
|
|
|
7) Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccha-romyces cerevisie lifespan. Nature. 2003; 425: 191-6
|
|
|
8) Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic calorie restriction and delay ageing in metazoans. Nature. 2004; 430: 686-9
|
|
|
9) Jill C, Milne PD, Lambert S, et al. Small molecule activators of SIRT1 as a therapeutics for the treatment of type 2 diabetes. Nature. 2007; 450: 712-6
|
|
|
10) Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004; 18: 1926-45
|
|
|
11) Tokunaga C, Yoshino K, Yonezawa K. mTOR integrates amino acid- and energy- sensing pathways. Biochem Biophys Res Commun. 2004; 313: 443-6
|
|
|
12) Salminen A, Kaarniranta K. Regulation of the aging process by autophagy. Trends Mol Med. 2009; 15: 217-24
|
|
|
13) Hands SL, Proud CG, Wyttenbach A. mTORʼs role in ageing: protein synthesis or autophagy? Aging. 2009; 20: 586-97
|
|
|
14) Vellai T, Takacs-Vellai K, Zhang Y, et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003; 436: 620
|
|
|
15) Jia K, Chen D, Riddle DL. The TOR pathway interacts with insulin signaling pathway to regulate C. elegans development, metabolism and lifespan. Development. 2004; 131: 3897-906
|
|
|
16) Bishop NA, Guarente L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature. 2007; 447: 545-9
|
|
|
17) Greer EL, Dowlatshahi D, Banko MR, et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol. 2007; 17: 1646-56
|
|
|
18) Panowski SH, Wolff S, Aguilaniu H, et al. PHA-4/Foxa mediates diet-restriction-induced longevity in C. elegans. Nature. 2007; 447: 550-5
|
|
|
19) Lakowski B, Hekimi S. The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998; 95: 13091-6
|
|
|
20) Kaeberlein TL, Smith ED, Tsuchiya M, et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell. 2006; 5: 487-94
|
|
|
21) Lee GD, Wilson MA, Zhu M, et al. Dietary Deprivation extends lifespan in Caenorhabditis elegans. Aging Cell. 2006; 5: 515-24
|
|
|
22) Honjoh S, Yamamoto T, Uno M, et al. Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature. 2009; 457: 726-30
|
|
|