1) Wu XW, Lee CC, Muzny DM, et al. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci U S A. 1989; 86: 9412-6
|
|
|
2) 松尾洋孝. 残されたトランスポーターへのアプローチ2. トランスポーターの分子機能を指標とした臨床遺伝学的解析による痛風の主要病因遺伝子ABCG2 の同定. 遺伝子医学MOOK. 2010; 19: 116-25
|
|
|
3) 松尾洋孝. 尿酸の再吸収機構と輸送体病-ゲノムワイド関連解析後の新展開. In: 御手洗哲也, 東原英二, 秋澤忠男, 五十嵐隆, 金井好克, 編. Annual Review 腎臓 2010. 東京: 中外医学社; 2010. p.9-20
|
|
|
4) Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002; 417: 447-52
|
|
|
5) Ichida K, Hosoyamada M, Hisatome I, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol. 2004; 15: 164-73
|
|
|
6) Wakida N, Tuyen DG, Adachi M, et al. Mutations in human urate transporter 1 gene in pre-secretory reabsorption defect type of familial renal hypouricemia. J Clin Endocrinol Metab. 2005; 90: 2169-74
|
|
|
7) Komoda F, Sekine T, Inatomi J, et al. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr Nephrol. 2004; 19: 728-33
|
|
|
8) Iwai N, Mino Y, Hosoyamada M, et al. A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese. Kidney Int. 2004; 66: 935-44
|
|
|
9) Taniguchi A, Urano W, Yamanaka M, et al. A common mutation in an organic anion trans-porter gene, SLC22A12, is a suppressing factor for the development of gout. Arthritis Rheum. 2005; 52: 2576-7
|
|
|
10) Ichida K, Hosoyamada M, Kamatani N, et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin Genet. 2008; 74: 243-51
|
|
|
11) Cheong HI, Kang JH, Lee JH, et al. Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatr Nephrol. 2005; 20: 886-90
|
|
|
12) Tzovaras V, Chatzikyriakidou A, Bairaktari E, et al. Absence of SLC22A12 gene mutations in Greek Caucasian patients with primary renal hypouricaemia. Scand J Clin Lab Invest. 2007; 67: 589-95
|
|
|
13) Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008; 83: 744-51
|
|
|
14) Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008; 283: 26834-8
|
|
|
15) 金井好克. 尿酸排泄異常の成因 尿酸トランスポーター. 高尿酸血症と痛風. 2009; 17: 21-7
|
|
|
16) 松尾洋孝, 市田公美. GLUT9の異常症. 高尿酸血症と痛風. 2010; 18: 84-9
|
|
|
17) Pascual JM, Wang D, Lecumberri B, et al. GLUT1 deficiency and other glucose transporter diseases. Eur J Endocrinol. 2004; 150: 627-33
|
|
|
18) Pascual JM, Wang D, Yang R, et al. Structural signatures and membrane helix 4 in GLUT1: inferences from human blood-brain glucose transport mutants. J Biol Chem. 2008; 283: 16732-42
|
|
|
19) Sato M, Mueckler M. A conserved amino acid motif (R-X-G-R-R) in the Glut1 glucose transporter is an important determinant of membrane topology. J Biol Chem. 1999; 274: 24721-5
|
|
|
20) Kawamura Y, Matsuo H, Chiba T, et al. Pathogenic GLUT9 mutations causing renal hypouricemia type 2 (RHUC2). Nucleosides Nucleotides Nucleic Acids. 2011; 30: 1105-11
|
|
|
21) Li S, Sanna S, Maschio A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007; 3: e194
|
|
|
22) Döring A, Gieger C, Mehta D, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008; 40: 430-6
|
|
|
23) Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008; 40: 437-42
|
|
|
24) McArdle PF, Parsa A, Chang YP, et al. Association of a common nonsynonymous variant in GLUT9 with serum uric acid levels in old order amish. Arthritis Rheum. 2008; 58: 2874-81
|
|
|
25) Caulfield MJ, Munroe PB, OʼNeill D, et al. SLC2A9 Is a High-Capacity Urate Transporter in Humans. PLoS Med. 2008; 5: e197
|
|
|
26) Dehghan A, Köttgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008; 372: 1953-61
|
|
|
27) Woodward OM, Köttgen A, Coresh J, et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009; 106: 10338-42
|
|
|
28) Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med. 2009; 1: 5ra11
|
|
|
29) 松尾洋孝, 高田龍平, 市田公美, 他. 痛風の主要な病因遺伝子ABCG2の同定. 実験医学. 2010; 28: 1285-9
|
|
|
30) Sica DA, Schoolwerth A. Elements of normal renal structure and function: Renal handling of organic anions and cations. In: Brenner BM, editor. Brenner and Rectorʼs The Kidney. 7th ed. Philadelphia: Saunders; 2004. p.645-9
|
|
|
31) 松尾洋孝. 痛風の病因遺伝子. 痛風と核酸代謝. 2010; 34: 159-69
|
|
|
32) Urano W, Taniguchi A, Anzai N, et al. Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout. Ann Rheum Dis. 2010; 69: 1232-4
|
|
|
33) Iharada M, Miyaji T, Fujimoto T, et al. Type 1 sodium-dependent phosphate transporter (SLC17A1 Protein) is a Cl(-)-dependent urate exporter. J Biol Chem. 2010; 285: 26107-13
|
|
|
34) Jutabha P, Anzai N, Kitamura K, et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J Biol Chem. 2010; 285: 35123-32
|
|
|
35) Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28, 141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009; 5: e1000504
|
|
|
36) van der Harst P, Bakker SJ, de Boer RA, et al. Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms. Hum Mol Genet. 2010; 19: 387-95
|
|
|
37) 木村弘章, 市田公美, 細山田真, 他. 近位尿細管管腔膜側に存在するヒト有機陰イオントランスポーターhOAT4(human Organic Anion Transporter 4)における尿酸輸送の解析. 痛風と核酸代謝. 2001; 25: 113-20
|
|
|
38) Hagos Y, Stein D, Ugele B, et al. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007; 18: 430-9
|
|
|
39) Anzai N, Miyazaki H, Noshiro R, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J Biol Chem. 2004; 279: 45942-50
|
|
|
40) Kamatani Y, Matsuda K, Okada Y, et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet. 2010; 42: 210-5
|
|
|
41) Yang Q, Köttgen A, Dehghan A, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010; 3: 523-30
|
|
|